61 resultados para Semantic Discursive
Resumo:
In this paper, we introduce a novel high-level visual content descriptor which is devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt to bridge the so called “semantic gap”. The proposed image feature vector model is fundamentally underpinned by the image labelling framework, called Collaterally Confirmed Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts of the images with the state-of-the-art low-level image processing and visual feature extraction techniques for automatically assigning linguistic keywords to image regions. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicates that our proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models.
Resumo:
The storage and processing capacity realised by computing has lead to an explosion of data retention. We now reach the point of information overload and must begin to use computers to process more complex information. In particular, the proposition of the Semantic Web has given structure to this problem, but has yet realised practically. The largest of its problems is that of ontology construction; without a suitable automatic method most will have to be encoded by hand. In this paper we discus the current methods for semi and fully automatic construction and their current shortcomings. In particular we pay attention the application of ontologies to products and the particle application of the ontologies.
Resumo:
Currently many ontologies are available for addressing different domains. However, it is not always possible to deploy such ontologies to support collaborative working, so that their full potential can be exploited to implement intelligent cooperative applications capable of reasoning over a network of context-specific ontologies. The main problem arises from the fact that presently ontologies are created in an isolated way to address specific needs. However we foresee the need for a network of ontologies which will support the next generation of intelligent applications/devices, and, the vision of Ambient Intelligence. The main objective of this paper is to motivate the design of a networked ontology (Meta) model which formalises ways of connecting available ontologies so that they are easy to search, to characterise and to maintain. The aim is to make explicit the virtual and implicit network of ontologies serving the Semantic Web.
Resumo:
In general, ranking entities (resources) on the Semantic Web (SW) is subject to importance, relevance, and query length. Few existing SW search systems cover all of these aspects. Moreover, many existing efforts simply reuse the technologies from conventional Information Retrieval (IR), which are not designed for SW data. This paper proposes a ranking mechanism, which includes all three categories of rankings and are tailored to SW data.
Resumo:
Numerous linguistic operations have been assigned to cortical brain areas, but the contributions of subcortical structures to human language processing are still being discussed. Using simultaneous EEG recordings directly from deep brain structures and the scalp, we show that the human thalamus systematically reacts to syntactic and semantic parameters of auditorily presented language in a temporally interleaved manner in coordination with cortical regions. In contrast, two key structures of the basal ganglia, the globus pallidus internus and the subthalamic nucleus, were not found to be engaged in these processes. We therefore propose that syntactic and semantic language analysis is primarily realized within cortico-thalamic networks, whereas a cohesive basal ganglia network is not involved in these essential operations of language analysis.
Resumo:
Previous functional imaging studies have shown that facilitated processing of a visual object on repeated, relative to initial, presentation (i.e., repetition priming) is associated with reductions in neural activity in multiple regions, including fusiforin/lateral occipital cortex. Moreover, activity reductions have been found, at diminished levels, when a different exemplar of an object is presented on repetition. In one previous study, the magnitude of diminished priming across exemplars was greater in the right relative to the left fusiform, suggesting greater exemplar specificity in the right. Another previous study, however, observed fusiform lateralization modulated by object viewpoint, but not object exemplar. The present fMRI study sought to determine whether the result of differential fusiform responses for perceptually different exemplars could be replicated. Furthermore, the role of the left fusiform cortex in object recognition was investigated via the inclusion of a lexical/semantic manipulation. Right fusiform cortex showed a significantly greater effect of exemplar change than left fusiform, replicating the previous result of exemplar-specific fusiform lateralization. Right fusiform and lateral occipital cortex were not differentially engaged by the lexical/semantic manipulation, suggesting that their role in visual object recognition is predominantly in the. C visual discrimination of specific objects. Activation in left fusiform cortex, but not left lateral occipital cortex, was modulated by both exemplar change and lexical/semantic manipulation, with further analysis suggesting a posterior-to-anterior progression between regions involved in processing visuoperceptual and lexical/semantic information about objects. The results are consistent with the view that the right fusiform plays a greater role in processing specific visual form information about objects, whereas the left fusiform is also involved in lexical/semantic processing. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Decoding emotional prosody is crucial for successful social interactions, and continuous monitoring of emotional intent via prosody requires working memory. It has been proposed by Ross and others that emotional prosody cognitions in the right hemisphere are organized in an analogous fashion to propositional language functions in the left hemisphere. This study aimed to test the applicability of this model in the context of prefrontal cortex working memory functions. BOLD response data were therefore collected during performance of two emotional working memory tasks by participants undergoing fMRI. In the prosody task, participants identified the emotion conveyed in pre-recorded sentences, and working memory load was manipulated in the style of an N-back task. In the matched lexico-semantic task, participants identified the emotion conveyed by sentence content. Block-design neuroimaging data were analyzed parametrically with SPM5. At first, working memory for emotional prosody appeared to be right-lateralized in the PFC, however, further analyses revealed that it shared much bilateral prefrontal functional neuroanatomy with working memory for lexico-semantic emotion. Supplementary separate analyses of males and females suggested that these language functions were less bilateral in females, but their inclusion did not alter the direction of laterality. It is concluded that Ross et al.'s model is not applicable to prefrontal cortex working memory functions, that evidence that working memory cannot be subdivided in prefrontal cortex according to material type is increased, and that incidental working memory demands may explain the frontal lobe involvement in emotional prosody comprehension as revealed by neuroimaging studies. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
We frequently encounter conflicting emotion cues. This study examined how the neural response to emotional prosody differed in the presence of congruent and incongruent lexico-semantic cues. Two hypotheses were assessed: (i) decoding emotional prosody with conflicting lexico-semantic cues would activate brain regions associated with cognitive conflict (anterior cingulate and dorsolateral prefrontal cortex) or (ii) the increased attentional load of incongruent cues would modulate the activity of regions that decode emotional prosody (right lateral temporal cortex). While the participants indicated the emotion conveyed by prosody, functional magnetic resonance imaging data were acquired on a 3T scanner using blood oxygenation level-dependent contrast. Using SPM5, the response to congruent cues was contrasted with that to emotional prosody alone, as was the response to incongruent lexico-semantic cues (for the 'cognitive conflict' hypothesis). The right lateral temporal lobe region of interest analyses examined modulation of activity in this brain region between these two contrasts (for the 'prosody cortex' hypothesis). Dorsolateral prefrontal and anterior cingulate cortex activity was not observed, and neither was attentional modulation of activity in right lateral temporal cortex activity. However, decoding emotional prosody with incongruent lexico-semantic cues was strongly associated with left inferior frontal gyrus activity. This specialist form of conflict is therefore not processed by the brain using the same neural resources as non-affective cognitive conflict and neither can it be handled by associated sensory cortex alone. The recruitment of inferior frontal cortex may indicate increased semantic processing demands but other contributory functions of this region should be explored.
Resumo:
Older adults often demonstrate higher levels of false recognition than do younger adults. However, in experiments using novel shapes without preexisting semantic representations, this age-related elevation in false recognition was found to be greatly attenuated. Two experiments tested a semantic categorization account of these findings, examining whether older adults show especially heightened false recognition if the stimuli have preexisting semantic representations, such that semantic category information attenuates or truncates the encoding or retrieval of item-specific perceptual information. In Experiment 1, ambiguous shapes were presented with or without disambiguating semantic labels. Older adults showed higher false recognition when labels were present but not when labels were never presented. In Experiment 2, older adults showed higher false recognition for concrete but not abstract objects. The semantic categorization account was supported.
Resumo:
In order to organize distributed educational resources efficiently, to provide active learners an integrated, extendible and cohesive interface to share the dynamically growing multimedia learning materials on the Internet, this paper proposes a generic resource organization model with semantic structures to improve expressiveness, scalability and cohesiveness. We developed an active learning system with semantic support for learners to access and navigate through efficient and flexible manner. We learning resources in an efficient and flexible manner. We provide facilities for instructors to manipulate the structured educational resources via a convenient visual interface. We also developed a resource discovering and gathering engine based on complex semantic associations for several specific topics.
Resumo:
A novel framework for multimodal semantic-associative collateral image labelling, aiming at associating image regions with textual keywords, is described. Both the primary image and collateral textual modalities are exploited in a cooperative and complementary fashion. The collateral content and context based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix, of the visual keywords, A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. Finally, we use Self Organising Maps to examine the classification and retrieval effectiveness of the proposed high-level image feature vector model which is constructed based on the image labelling results.
Research agenda in context-specific semantic resolution of security and QoS for ambient intelligence