117 resultados para Salmonella Enteritidis
Resumo:
In this study, differences at the genetic level of 37 Salmonella Enteritidis strains from five phage types (PTs) were compared using comparative genomic hybridization (CGH) to assess differences between PTs. There were approximately 400 genes that differentiated prevalent (4, 6, 8 and 13a) and sporadic (11) PTs, of which 35 were unique to prevalent PTs, including six plasmid-borne genes, pefA, B, C, D, srgC and rck, and four chromosomal genes encoding putative amino acid transporters. Phenotype array studies also demonstrated that strains from prevalent PTs were less susceptible to urea stress and utilized L-histidine, L-glutamine, L-proline, L-aspartic acid, gly-asn and gly-gln more efficiently than PT11 strains. Complementation of a PT11 strain with the transporter genes from PT4 resulted in a significant increase in utilization of the amino acids and reduced susceptibility to urea stress. In epithelial cell association assays, PT11 strains were less invasive than other prevalent PTs. Most strains from prevalent PTs were better biofilm formers at 37 degrees C than at 28 degrees C, whilst the converse was true for PT11 strains. Collectively, the results indicate that genetic and corresponding phenotypic differences exist between strains of the prevalent PTs 4, 6, 8 and 13a and non-prevalent PT11 strains that are likely to provide a selective advantage for strains from the former PTs and could help them to enter the food chain and cause salmonellosis.
Resumo:
To investigate the role of the SEF14 fimbrial antigen in pathogenesis, a single defined sefA (SEF14(-)) inactivated mutant of Salmonella enteritidis strain LA5 was constructed and tested in a number of biological assay systems. There was no significant difference between the wild-type strain and the isogenic SEF14(-) mutant in their abilities to adhere to and invade HEp-2 epithelial cells or their survival in mouse peritoneal macrophages, whereas the SEF14(-) mutant was ingested more rapidly by isolated human PMN. Both the strains colonized the intestine, invaded and spread systemically in 1 day-old chicks, laying hens and BALB/c mice equally well. A significantly greater number of chicks excreted the wildtype SEF14(+) strain during the first week following infection as compared to those infected with the SEF14(-) mutant. However, similar numbers of chicks excreted the two strains between 2 and 7 weeks after infection. These results indicate that possession of SEF14 fimbriae alone do not appear to play a significant role in the pathogenesis of S. enteritidis although its contribution to virulence may be dependent on the host species infected. (C) 1996 Academic Press Limited
Resumo:
A polymerase chain reaction (PCR) for the specific detection of the gene sequence, sefA, encoded by all isolates of Salmonella enteritidis, was developed. The PCR could detect as few as four S enteritidis washed bacterial cells but egg contents inhibited the PCR. Eggs spiked with 50 S enteritidis bacterial cells were homogenised, inoculated into buffered peptone water and grown at 37 degrees C for 16 hours, when the PCR was successful. A positive internal control was developed to differentiate between true and false negative PCR results for the detection of S enteritidis. In a limited trial of the egg handling procedures and the PCR, one of 250 chickens' eggs from retail outlets was found to be contaminated with S enteritidis.
Resumo:
Salmonella enteritidis isolated from poultry infections generated a convoluted colonial morphology after 48 h growth on colonisation factor antigen (CFA) agar at 25 degrees C. A mutant S. enteritidis defective for the elaboration of the SEF17 fimbrial antigen, in which the agf gene cluster was inactivated by insertion of an ampicillin resistance gene cassette, and other wild-type S. enteritidis transduced to this genotype failed to produce convoluted colonies. However, growth of SEF17(-) mutans at 25 degrees C on CFA agar supplemented with 0.001% Congo red resulted in partial recovery of the phenotype. Immunoelectron microscopy demonstrated that copious amounts of the SEF17 fimbrial antigen were present in the extracellular matrix of convoluted colonies of wild-type virulent S. enteritidis isolates. Bacteria were often hyperflagellated also. Immunoelectron microscopy of SEF17(-) mutants grown on CFA agar+0.001% Congo red demonstrated the elaboration of an as yet undefined fimbrial structure. Isolates of S. enteritidis which were described previously as avirulent and sensitive to environmental stress failed to express SEF17 or produce convoluted colonies. These data indicate an essential role for SEF17, and possibly for another fimbria and flagella, in the generation of the convoluted colonial phenotype. The relationship between virulence and colonial phenotype is discussed.
Resumo:
The nucleotide sequence of a 3 kb region immediately upstream of the sef operon operon of Salmonella enteritidis was determined. A 1230 base pair insertion sequence which shared sequence identity (> 75%) with members of the IS3 family was revealed. This element, designated IS1230, had almost identical (90% identity) terminal inverted repeats to Escherichia coli IS3 but unlike other IS3-like sequences lacked the two characteristic open reading frames which encode the putative transposase. S. enteritidis possessed only one copy of this insertion sequence although Southern hybridisation analysis of restriction digests of genomic DNA revealed another fragment located in a region different from the sef operon which hybridised weakly which suggested the presence of an IS1230 homologue. The distribution of IS1230 and IS1230-like elements was shown to be widespread amongst salmonellas and the patterns of restriction fragments which hybridised differed significantly between Salmonella serotypes and it is suggested that IS1230 has potential for development as a differential diagnostic tool.
Resumo:
Specific immunological reagents were used to investigate the expression of SEF17 fimbriae by cultured strains of Salmonella enteriditis. Most strains of Salm. enteritidis tested expressed SEF17 when cultured at temperatures of 18-30 degrees C. However, two wild-type strains produced SEF17 when also grown at 37 degrees C and 42 degrees C. Colonization factor antigen agar was the optimum medium for SEF17 expression, whereas Drigalski and Sensitest agars poorly supported SEF17 production. Very fine fimbriae produced by a strain of Salm. typhimurium were specifically and strongly labelled by SEF17 monoclonal and polyclonal antibodies, indicating considerable antigenic conservation between the two. Curli fimbriae from Escherichin coli were similarly labelled. The production of these fimbriae corellated with the binding of fibronectin by the organism. Congo red binding by cultured bacteria was not a reliable criterion for the expression of SEF17 fimbriae.
Resumo:
Salmonella enteritidis expresses flagella and several finely regulated fimbriae, including SEF14, SEF17 and SEF21 (type 1). A panel of mutants was prepared in three strains of S. enteritidis to elucidate the role of these surface appendages in the association with and invasion of cultured epithelial cells. In all assays, the naturally occurring regulatory-defective strain 27655R associated with tissue culture cells significantly more than wild-type progenitor strains LA5 and S1400/94. Compared with wild-type strains, SEF14 mutants had no effect on association and invasion, whereas SEF17, SEF21 and aflagellate mutants showed significant reductions in both processes. Histological examination suggested a role for SEF17 in localized, aggregative adherence, which could be specifically blocked by anti-SEF17 sera and purified SEF17 fimbriae. SEF21-mediated association was neutralized by mannose and a specific monoclonal antibody, although to observe enhanced association it was necessary for the bacteria to be in fimbriate phase prior to infection. Additionally, aflagellate mutants associated and invaded less than motile bacteria. This study demonstrated the potential for multifactorial association and invasion of epithelial cells which involved SEF17 and SEF21 fimbriae, and flagella-mediated motility.
Resumo:
Isogenic mutants of Salmonella enteritidis defective for the elaboration of fimbrial types SEF14, SEF17, SEF21 and flagella were used to study the contribution these organelles made to colonization, invasion and lateral transfer in young chicks. The caecum, liver and spleen were colonized within 24 h following oral inoculation of 1-day-old chicks with 10(5) wild-type S. enteritidis strain LA5. However, for some mutants, the numbers of organisms recovered from internal organs was reduced significantly, particularly at 24 h post-inoculum, which supported the hypothesis that the organelles contribute to invasion and dissemination to internal organs. Specifically, mutations affecting SEF17, SEF21 and flagella contributed to a delay in colonization of the spleen, and those affecting SEF21 and flagella delayed colonization of the liver. Lower numbers of bacteria were recovered from the caecum with mutants deficient in elaboration of SEF21. Sentinel birds were colonized by LA5 or EAV40 (14(-), 17(-), 21(-), fla(-)) directly from the environment within 2 days, although a consistent slight delay was observed with the multiple mutant. Overall, our data suggest a collective role for SEF17, SEF21 and flagella, but not SEF14, in the early stages of colonization and invasion of young chicks by S. enteritidis, but these surface appendages appear unnecessary for colonization of birds from their immediate environment.
Resumo:
Growth profiles of two isolates of Salmonella enteritidis phage type (PT) 4 inoculated into either the albumen of whole shell eggs or into separated albumen were found to be markedly affected by the size of the inoculum and the composition of the medium used to suspend the cells prior to inoculation. Using our model with an inoculum of two cells, multiplication of the Salmonella was not seen in 93% of eggs held at 20 degreesC for 8 days. In approximately 7% of eggs, however, growth occurred during the 8 days of storage. If the inoculum equaled or exceeded 25 cells per egg when eggs were subsequently stored at 20 degreesC, or 250 cells per egg when eggs were stored at 30 degreesC, high levels of growth of Salmonella in the egg occurred significantly more frequently than when the inoculum was two cells. High levels of growth were also seen more frequently if the inoculum was suspended in buffered peptone water or maximal recovery diluent rather than in phosphate buffered saline. Growth of Salmonella in separated albumen occurred very infrequently (1.1% of samples) at low inoculum levels and did not become significant until the inoculum was 250 cells or greater. Growth in the albumen was unaffected by the composition of the suspending medium. Provided that the inoculum was approximately 2 cells per egg and the bacteria were suspended in PBS, observed growth profiles of S. enteritidis inoculated into the albumen of whole eggs resembled those in naturally contaminated eggs. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Adherence of pathogenic Escherichia coli and Salmonella spp. to host cells is in part mediated by curli fimbriae which, along with other virulence determinants, are positively regulated by RpoS. Interested in the role and regulation of curli (SEF17) fimbriae of Salmonella enteritidis in poultry infection, we tested the virulence of naturally occurring S. enteritidis PT4 strains 27655R and 27655S which displayed constitutive and null expression of curli (SEF17) fimbriae, respectively, in a chick invasion assay and analysed their rpoS alleles. Both strains were shown to be equally invasive and as invasive as a wild-type phage type 4 strain and an isogenic derivative defective for the elaboration of curli. We showed that the rpoS allele of 27655S was intact even though this strain was non-curliated and we confirmed that a S. enteritidis rpoS::str(r) null mutant was unable to express curli, as anticipated. Strain 27655R, constitutively curliated, possessed a frameshift mutation at position 697 of the rpoS coding sequence which resulted in a truncated product and remained curliated even when transduced to rpoS::str(r). Additionally, rpoS mutants are known to be cold-sensitive, a phenotype confirmed for strain 27655R. Collectively, these data indicated that curliation was not a significant factor for pathogenesis of S. enteritidis in this model and that curliation of strains 27655R and 27655S was independent of RpoS. Significantly, strain 27655R possessed a defective rpoS allele and remained virulent. Here was evidence that supported the concept that different naturally occurring rpoS alleles may generate varying virulence phenotypic traits. (C) 1998 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
The present study aims to evaluate the probiotic potential of lactic acid bacteria (LAB) isolated from naturally fermented olives and select candidates to be used as probiotic starters for the improvement of the traditional fermentation process and the production of newly added value functional foods. Seventy one (71) lactic acid bacterial strains (17 Leuconostoc mesenteroides, 1 Ln. pseudomesenteroides, 13 Lactobacillus plantarum, 37 Lb. pentosus, 1 Lb. paraplantarum, and 2 Lb. paracasei subsp. paracasei) isolated from table olives were screened for their probiotic potential. Lb. rhamnosus GG and Lb. casei Shirota were used as reference strains. The in vitro tests included survival in simulated gastrointestinal tract conditions, antimicrobial activity (against Listeria monocytogenes, Salmonella Enteritidis, Escherichia coli O157:H7), Caco-2 surface adhesion, resistance to 9 antibiotics and haemolytic activity. Three (3) Lb. pentosus, 4 Lb. plantarum and 2 Lb. paracasei subsp. paracasei strains demonstrated the highest final population (>8 log cfu/ml) after 3 h of exposure at low pH. The majority of the tested strains were resistant to bile salts even after 4 h of exposure, while 5 Lb. plantarum and 7 Lb. pentosus strains exhibited partial bile salt hydrolase activity. None of the strains inhibited the growth of the pathogens tested. Variable efficiency to adhere to Caco-2 cells was observed. This was the same regarding strains' susceptibility towards different antibiotics. None of the strains exhibited β-haemolytic activity. As a whole, 4 strains of Lb. pentosus, 3 strains of Lb. plantarum and 2 strains of Lb. paracasei subsp. paracasei were found to possess desirable in vitro probiotic properties similar to or even better than the reference probiotic strains Lb. casei Shirota and Lb. rhamnosus GG. These strains are good candidates for further investigation both with in vivo studies to elucidate their potential health benefits and in olive fermentation processes to assess their technological performance as novel probiotic starters.
Resumo:
The Phenotype MicroArray (TM) (PM) technology was used to study the metabolic characteristics of 29 Salmonella strains belonging to seven serotypes of S. enterica spp. enterica. Strains of serotypes Typhimurium (six strains among definite phage types DTs 1, 40 and 104) and Agona (two strains) were tested for 949 substrates, Enteritidis (six strains of phage type PT1), Give, Hvittingfoss, Infantis and Newport strains (two of each) were tested for 190 substrates and seven other Agona strains for 95 substrates. The strains represented 18 genotypes in pulsed-field gel electrophoresis (PFGE). Among 949 substrates, 18 were identified that could be used to differentiate between the strains of those seven serotypes or within a single serotype. Unique metabolic differences between the Finnish endemic Typhimurium DT1 and Agona strains were detected, for example, in the metabolism of d-tagatose, d-galactonic acid gamma-lactone and l-proline as a carbon source. Thus, the PM technique is a useful tool for identifying potential differential markers on a metabolic basis that could be used for epidemiological surveillance.
Resumo:
The pefA gene which encoded the serotype associated plasmid (SAP) mediated fimbrial major subunit antigen of Salmonella enterica serotype Typhimurium shared genetic identity with 128 of 706 salmonella isolates as demonstrated by dot (colony) hybridization. Seventy-seven of 113 isolates of Typhimurium and individual isolates of serotypes Bovis-morbificans, Cholerae-suis and Enteritidis phage type 9b hybridized pefA strongly, whereas 48 isolates of Enteritidis hybridized pefA weakly and one Enteritidis isolate of phage type 14b failed to hybridize. Individual isolates of 294 serotypes and 247 individual isolates of serotype Dublin did not hybridize pefA. Southern hybridization of plasmids extracted from Enteritidis demonstrated that the pefA gene probe hybridized strongly an atypical SAP of 80 kb in size harboured by one Enteritidis isolate of phage-type 9b, whereas the typical SAP of 58 kb in size harboured by 48 Enteritidis isolates hybridized weakly. One Enteritidis isolate of phage type 14b which failed to hybridize pefA in dot (colony) hybridization experiments was demonstrated to be plasmid free. A cosmid library of Enteritidis phage type 4 expressed in Escherichia coli K12 was screened by hybridization for the presence of pef sequences. Recombinant clones which were deduced to harbour the entire pef operon elaborated a PEF-like fimbrial structure at the cell surface. The PEF-like fimbrial antigen was purified from one cosmid clone and used in western blot experiments with sera from chickens infected with Enteritidis phage-type 4. Seroconversion to the fimbrial antigen was observed which indicated that the Enteritidis PEF-like fimbrial structure was expressed at some stage during infection. Nucleotide sequence analysis demonstrated that the pefA alleles of Typhimurium and Enteritidis phage-type 4 shared 76% DNA nucleotide and 82% deduced amino acid sequence identity.
Resumo:
A semi-quantitative cloacal-swab method was used as an indirect measure of caecal colonisation of one-day old and five-day old chicks after oral dosing with wild-type Salmonella enterica serovar Enteritidis PT4 and,genetically defined isogenic derivatives lacking the ability to elaborate flagella or fimbriae. Birds of both ages were readily and persistently colonised by all strains although there war a decline in shedding by the older birds after about 21 days. There were no significant differences in shedding of wild-type or mutants in single-dose experiments. In competition experiments, in which five-day old birds were dosed orally with wild-type and mutants together, shedding of non-motile derivatives was significantly lower than wild-type, At 35 days post infection, birds were sacrificed and direct counts of mutants and wild-type from each caecum were determined. Whilst there appeared to be poor correlation between direct counts and the indirect swab method, the overall trends shown by these methods of assessment indicated that flagella and not fimbriae were important in caecal colonisation in these models. Crown Copyright (C) 1999 Published by Elsevier Science B.V.