49 resultados para SINGLE-NUCLEOTIDE POLYMORPHISMS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Progression of the metabolic syndrome (MetS) is determined by genetic and environmental factors. Gene-environment interactions may be important in modulating the susceptibility to the development of MetS traits. Objective: Gene-nutrient interactions were examined in MetS subjects to determine interactions between single nucleotide polymorphisms (SNPs) in the adiponectin gene (ADIPOQ) and its receptors (ADIPOR1 and ADIPOR2) and plasma fatty acid composition and their effects on MetS characteristics. Design: Plasma fatty acid composition, insulin sensitivity, plasma adiponectin and lipid concentrations, and ADIPOQ, ADIPOR1, and ADIPOR2 SNP genotypes were determined in a cross-sectional analysis of 451 subjects with the MetS who participated in the LIPGENE (Diet, Genomics, and the Metabolic Syndrome: an Integrated Nutrition, Agro-food, Social, and Economic Analysis) dietary intervention study and were repeated in 1754 subjects from the LIPGENE-SU.VI.MAX (SUpplementation en VItamines et Mineraux AntioXydants) case-control study (http://www.ucd.ie/lipgene). Results: Single SNP effects were detected in the cohort. Triacylglycerols, nonesterified fatty acids, and waist circumference were significantly different between genotypes for 2 SNPs (rs266729 in ADIPOQ and rs10920533 in ADIPOR1). Minor allele homozygotes for both of these SNPs were identified as having degrees of insulin resistance, as measured by the homeostasis model assessment of insulin resistance, that were highly responsive to differences in plasma saturated fatty acids (SFAs). The SFA-dependent association between ADIPOR1 rs10920533 and insulin resistance was replicated in cases with MetS from a separate independent study, which was an association not present in controls. Conclusions: A reduction in plasma SFAs could be expected to lower insulin resistance in MetS subjects who are minor allele carriers of rs266729 in ADIPOQ and rs10920533 in ADIPOR1. Personalized dietary advice to decrease SFA consumption in these individuals may be recommended as a possible therapeutic measure to improve insulin sensitivity. This trial was registered at clinicaltrials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Adiponectin gene expression is modulated by peroxisome proliferator–activated receptor γ, which is a transcription factor activated by unsaturated fatty acids. Objective: We investigated the effect of the interaction between variants at the ADIPOQ gene locus, age, sex, body mass index (BMI), ethnicity, and the replacement of dietary saturated fatty acids (SFAs) with monounsaturated fatty acids (MUFAs) or carbohydrates on serum adiponectin concentrations. Design: The RISCK (Reading, Imperial, Surrey, Cambridge, and Kings) study is a parallel-design, randomized controlled trial. Serum adiponectin concentrations were measured after a 4-wk high-SFA (HS) diet and a 24-wk intervention with reference (HS), high-MUFA (HM), and low-fat (LF) diets. Single nucleotide polymorphisms at the ADIPOQ locus −11391 G/A (rs17300539), −10066 G/A (rs182052), −7734 A/C (rs16861209), and +276 G/T (rs1501299) were genotyped in 448 participants. Results: In white Europeans, +276 T was associated with higher serum adiponectin concentrations (n = 340; P = 0.006) and −10066 A was associated with lower serum adiponectin concentrations (n = 360; P = 0.03), after adjustment for age, BMI, and sex. After the HM diet, −10066 G/G subjects showed a 3.8% increase (95% CI: −0.1%, 7.7%) and G/A+A/A subjects a 2.6% decrease (95% CI: −5.6%, 0.4%) in serum adiponectin (P = 0.006 for difference after adjustment for the change in BMI, age, and sex). In −10066 G/G homozygotes, serum adiponectin increased with age after the HM diet and decreased after the LF diet. Conclusion: In white −10066 G/G homozygotes, an HM diet may help to increase adiponectin concentrations with advancing age. This trial was registered at clinicaltrials.gov as ISRCTN29111298.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/Aims: The peroxisome proliferator-activated receptors (PPARs) are transcriptional regulators of lipid metabolism, activated by unsaturated fatty acids. We investigated independent and interactive effects of PPARγ2 gene PPARG Pro12Ala (rs1801282) andPPARαgene PPARA Leu162Val (rs1800206) genotypes with dietary intake of fatty acids on concentrations of plasma lipids in subjects of whom 47.5% had metabolic syndrome. Methods: The RISCK study is a parallel design, randomised controlled trial. Plasma lipids were quantified at baseline after a 4-week high saturated fatty acids diet and after three parallel 24-week interventions with reference (high saturated fatty acids), high monounsaturated fatty acids and low-fat diets. Single nucleotide polymorphisms were genotyped in 466 subjects. Results: At baseline, the PPARG Ala12allele was associated with increased plasma total cholesterol (n = 378; p = 0.04), LDL cholesterol (p = 0.05) and apoB (p =0.05) after adjustment for age, gender and ethnicity. At baseline, PPARA Leu162Val × PPARG Pro12Ala genotype interaction did not significantly influence plasma lipid concentrations. After dietary intervention, gene-gene interaction significantly influenced LDL cholesterol (p =0.0002) and small dense LDL as a proportion of LDL (p = 0.005) after adjustments. Conclusions: Interaction between PPARG Pro12Ala and PPARA Leu162Valgenotypes may influence plasma LDL cholesterol concentration and the proportion as small dense LDL after a high monounsaturated fatty acids diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leptospira have a worldwide distribution and include important zoonotic pathogens yet diagnosis and differentiation still tend to rely on traditional bacteriological and serological approaches. In this study a 1.3 kb fragment of the rrs gene (16S rDNA) was sequenced from a panel of 22 control strains, representing serovars within the pathogenic species Leptospira interrogans, Leptospira borgpetersenii, and Leptospira kirschneri, to identify single nucleotide polymorphisms (SNPs). These were identified in the 5' variable region of the 16S sequence and a 181 bp PCR fragment encompassing this region was used for speciation by Denaturing High Performance Liquid Chromatography (D-HPLC). This method was applied to eleven additional species, representing pathogenic, non-pathogenic and intermediate species and was demonstrated to rapidly differentiate all but 2 of the non-pathogenic Leptospira species. The method was applied successfully to infected tissues from field samples proving its value for diagnosing leptospiral infections found in animals in the UK. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increasing number of studies have reported a heritable component for the regulation of energy intake and eating behaviour, although the individual polymorphisms and their ‘effect size’ are not fully elucidated. The aim of the present study was to examine the relationship between specific SNP and appetite responses and energy intake in overweight men. In a randomised cross-over trial, forty overweight men (age 32 (sd 09) years; BMI 27 (sd 2) kg/m2) attended four sessions 1 week apart and received three isoenergetic and isovolumetric servings of dairy snacks or water (control) in random order. Appetite ratings were determined using visual analogue scales and energy intake at an ad libitum lunch was assessed 90 min after the dairy snacks. Individuals were genotyped for SNP in the fat mass and obesity-associated (FTO), leptin (LEP), leptin receptor (LEPR) genes and a variant near the melanocortin-4 receptor (MC4R) locus. The postprandial fullness rating over the full experiment following intake of the different snacks was 17·2 % (P= 0·026) lower in A carriers compared with TT homozygotes for rs9939609 (FTO, dominant) and 18·6 % (P= 0·020) lower in G carriers compared with AA homozygotes for rs7799039 (LEP, dominant). These observations indicate that FTO and LEP polymorphisms are related to the variation in the feeling of fullness and may play a role in the regulation of food intake. Further studies are required to confirm these initial observations and investigate the ‘penetrance’ of these genotypes in additional population subgroups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Differences in the interindividual response to dietary intervention could be modified by genetic variation in nutrient-sensitive genes. OBJECTIVE: This study examined single nucleotide polymorphisms (SNPs) in presumed nutrient-sensitive candidate genes for obesity and obesity-related diseases for main and dietary interaction effects on weight, waist circumference, and fat mass regain over 6 mo. DESIGN: In total, 742 participants who had lost ≥ 8% of their initial body weight were randomly assigned to follow 1 of 5 different ad libitum diets with different glycemic indexes and contents of dietary protein. The SNP main and SNP-diet interaction effects were analyzed by using linear regression models, corrected for multiple testing by using Bonferroni correction and evaluated by using quantile-quantile (Q-Q) plots. RESULTS: After correction for multiple testing, none of the SNPs were significantly associated with weight, waist circumference, or fat mass regain. Q-Q plots showed that ALOX5AP rs4769873 showed a higher observed than predicted P value for the association with less waist circumference regain over 6 mo (-3.1 cm/allele; 95% CI: -4.6, -1.6; P/Bonferroni-corrected P = 0.000039/0.076), independently of diet. Additional associations were identified by using Q-Q plots for SNPs in ALOX5AP, TNF, and KCNJ11 for main effects; in LPL and TUB for glycemic index interaction effects on waist circumference regain; in GHRL, CCK, MLXIPL, and LEPR on weight; in PPARC1A, PCK2, ALOX5AP, PYY, and ADRB3 on waist circumference; and in PPARD, FABP1, PLAUR, and LPIN1 on fat mass regain for dietary protein interaction. CONCLUSION: The observed effects of SNP-diet interactions on weight, waist, and fat mass regain suggest that genetic variation in nutrient-sensitive genes can modify the response to diet. This trial was registered at clinicaltrials.gov as NCT00390637.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rationale:Metabolic Syndrome (MetS) is a high prevalence condition characterized by altered energy metabolism, insulin resistance and elevated cardiovascular risk.Objectives:Although many individual single nucleotide polymorphisms (SNPs) have been linked to certain MetS features, there are few studies analyzing the influence of SNPs on carbohydrate metabolism in MetS.Methods:904 SNPs (tag SNPs and functional SNPs) were tested for influence in eight fasting and dynamic markers of carbohydrate metabolism, performing an intravenous glucose tolerance test in 450 participants of the LIPGENE study.Findings:From 382 initial gene-phenotype associations between SNPs and any phenotypic variables, 61 (a 16 % of the pre-selected) remained significant after Bootstrapping. Top SNPs affecting glucose metabolism variables were as follows: fasting glucose: rs26125 (PPARGC1B); fasting insulin: rs4759277 (LRP1); C peptide: rs4759277 (LRP1); HOMA-IR: rs4759277 (LRP1); QUICKI: rs184003 (AGER); SI: rs7301876 (ABCC9), AIRg: rs290481 (TCF7L2) and DI: rs12691 (CEBPA).Conclusions:We describe here the top SNPs linked to phenotypic features in carbohydrate metabolism among aproximately 1000 candidate gene variations in fasting and postprandial samples of 450 patients with MetS from the LIPGENE study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Although the peroxisome proliferator-activated receptor γ (PPARγ) pathway is central in adipogenesis, it remains unknown whether it influences change in body weight (BW) and whether dietary fat has a modifying effect on the association. OBJECTIVES: We examined whether 27 single nucleotide polymorphisms (SNPs) within 4 genes in the PPARγ pathway are associated with the OR of being a BW gainer or with annual changes in anthropometry and whether intake of total fat, monounsaturated fat, polyunsaturated fat, or saturated fat has a modifying effect on these associations. METHODS: A case-noncase study included 11,048 men and women from cohorts in the European Diet, Obesity and Genes study; 5552 were cases, defined as individuals with the greatest BW gain during follow-up, and 6548 were randomly selected, including 5496 noncases. We selected 4 genes [CCAAT/enhancer binding protein β (CEBPB), phosphoenolpyruvate carboxykinase 2, PPARγ gene (PPARG), and sterol regulatory element binding transcription factor 1] according to evidence about biologic plausibility for interactions with dietary fat in weight regulation. Diet was assessed at baseline, and anthropometry was followed for 7 y. RESULTS: The ORs for being a BW gainer for the 27 genetic variants ranged from 0.87 (95% CI: 0.79, 1.03) to 1.12 (95% CI: 0.96, 1.22) per additional minor allele. Uncorrected, CEBPB rs4253449 had a significant interaction with the intake of total fat and subgroups of fat. The OR for being a BW gainer for each additional rs4253449 minor allele per 100 kcal higher total fat intake was 1.07 (95% CI: 1.02, 1.12; P = 0.008), and similar associations were found for subgroups of fat. CONCLUSIONS: Among European men and women, the influence of dietary fat on associations between SNPs in the PPARγ pathway and anthropometry is likely to be absent or marginal. The observed interaction between rs4253449 and dietary fat needs confirmation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tagged microarray marker (TAM) method allows high-throughput differentiation between predicted alternative PCR products. Typically, the method is used as a molecular marker approach to determining the allelic states of single nucleotide polymorphisms (SNPs) or insertion-deletion (indel) alleles at genomic loci in multiple individuals. Biotin-labeled PCR products are spotted, unpurified, onto a streptavidin-coated glass slide and the alternative products are differentiated by hybridization to fluorescent detector oligonucleotides that recognize corresponding allele-specific tags on the PCR primers. The main attractions of this method are its high throughput (thousands of PCRs are analyzed per slide), flexibility of scoring (any combination, from a single marker in thousands of samples to thousands of markers in a single sample, can be analyzed) and flexibility of scale (any experimental scale, from a small lab setting up to a large project). This protocol describes an experiment involving 3,072 PCRs scored on a slide. The whole process from the start of PCR setup to receiving the data spreadsheet takes 2 d.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to convert existing faba bean (Vicia faba L.) single nucleotide polymorphism (SNP) markers from cleaved amplification polymorphic sequences and SNaPshot® formats, which are expensive and time-consuming, to the more convenient KBiosciences competitive allele‐specific PCR (KASP) assay format. Out of 80 assays designed, 75 were validated, though a core set of 67 of the most robust markers is recommended for further use. The 67 best KASP SNP assays were used across two generations of single seed descent to detect unintended outcrossing and to track and quantify loss of heterozygosity, a capability that will significantly increase the efficiency and performance of pure line production and maintenance. This same set of assays was also used to examine genetic relationships between the 67 members of the partly inbred panel, and should prove useful for line identification and diversity studies in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the utility of single nucleotide polymorphism loci for full trio and mother-unavailable paternity testing cases, in the presence of population substructure and relatedness of putative and actual fathers. We focus primarily on the expected number of loci required to gain specified probabilities of mismatches, and report the expected proportion of paternity indices greater than three threshold values for these loci. (c) 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Homocysteine and asymmetric dimethylarginine (ADMA) affect nitric oxide (NO) concentration, thereby contributing to cardiovascular disease (CVD). Both amino acids can be reduced in vivo by estrogen. Variation in the estrogen receptor (ER) may influence homocysteine and ADMA, yet no information is available on associations with single nucleotide polymorphisms in the estrogen receptor genes ER alpha (PvuII and XbaI) and ER beta (1730G -> A and cx+56 G -> A). Objective To find relationships between common polymorphisms associated with cardiovascular disease and cardiovascular risk factors homocysteine and ADMA. Methods In a cross-sectional study with healthy postmenopausal women (n = 89), homocysteine, ADMA, nitric oxide metabolites (NOx), plasma folate and ER alpha and beta polymorphisms ER alpha PvuII, ER alpha XbaI; ER beta 1730G -> A (AluI), ER beta cx+56 G -> A (Tsp5091) were analyzed. Results Women who are homozygotic for ER beta cx+56 G -> A A/A exhibited higher homocysteine (p = 0.012) and NOx (p = 0.056) levels than wildtype or heterozygotes. NOx concentration was also significantly affected by ER beta 1730 G -> A polymorphism (p = 0.025). The ER beta (p < 0.001) and ER alpha (p < 0.001) polymorphisms were in linkage disequilibrium. Conclusions Women who are homozygotic for ER beta cx+S6 G -> A A/A may be at increased risk for cardiovascular disease due to higher homocysteine levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sample of 10 Norway rats (Rattus norvegicus) was taken for DNA resistance testing from an agricultural site in Kent where applications of the anticoagulant rodenticide bromadiolone had been unsuccessful. All animals tested were homozygous for the single nucleotide VKORC1 polymorphism tyrosine139phenylalanine, or Y139F. This is a common resistance mutation found extensively in France and Belgium but not previously in the UK. Y139F confers a significant level of resistance to first-generation anticoagulants, such as chlorophacinone, and to the second-generation compound bromadiolone. Another compound widely used in the UK, difenacoum, is also thought to be partially resisted by rats which carry Y139F. A silent VKORC1 mutation was also found in all rats tested. The presence of a third important VKORC1 mutation which confers resistance to anticoagulant rodenticides in widespread use in the UK, the others being Y139C and L120Q, further threatens the ability of pest control practitioners to deliver effective rodent control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Therapygenetics, the study of genetic determinants of response to psychological therapies, is in its infancy. Here, we investigate whether single-nucleotide polymorphisms in nerve growth factor (NGF) (rs6330) and brain-derived neutrotrophic factor (BDNF) (rs6265) genes predict the response to cognitive behaviour therapy (CBT). Neurotrophic genes represent plausible candidate genes: they are implicated in synaptic plasticity, response to stress, and are widely expressed in brain areas involved in mood and cognition. Allelic variation at both loci has shown associations with anxiety-related phenotypes. A sample of 374 anxiety-disordered children with white European ancestry was recruited from clinics in Reading, UK, and in Sydney, Australia. Participants received manualised CBT treatment and DNA was collected from buccal cells using cheek swabs. Treatment response was assessed at post-treatment and follow-up time points. We report first evidence that children with one or more copies of the T allele of NGF rs6330 were significantly more likely to be free of their primary anxiety diagnosis at follow-up (OR=0.60 (0.42–0.85), P=0.005). These effects remained even when other clinically relevant covariates were accounted for (OR=0.62 (0.41–0.92), P=0.019). No significant associations were observed between BDNF rs6265 and response to psychological therapy. These findings demonstrate that knowledge of genetic markers has the potential to inform clinical treatment decisions for psychotherapeutic interventions.