49 resultados para Robin Hood
Resumo:
1. Demographic models are assuming an important role in management decisions for endangered species. Elasticity analysis and scope for management analysis are two such applications. Elasticity analysis determines the vital rates that have the greatest impact on population growth. Scope for management analysis examines the effects that feasible management might have on vital rates and population growth. Both methods target management in an attempt to maximize population growth. 2. The Seychelles magpie robin Copsychus sechellarum is a critically endangered island endemic, the population of which underwent significant growth in the early 1990s following the implementation of a recovery programme. We examined how the formal use of elasticity and scope for management analyses might have shaped management in the recovery programme, and assessed their effectiveness by comparison with the actual population growth achieved. 3. The magpie robin population doubled from about 25 birds in 1990 to more than 50 by 1995. A simple two-stage demographic model showed that this growth was driven primarily by a significant increase in the annual survival probability of first-year birds and an increase in the birth rate. Neither the annual survival probability of adults nor the probability of a female breeding at age 1 changed significantly over time. 4. Elasticity analysis showed that the annual survival probability of adults had the greatest impact on population growth. There was some scope to use management to increase survival, but because survival rates were already high (> 0.9) this had a negligible effect on population growth. Scope for management analysis showed that significant population growth could have been achieved by targeting management measures at the birth rate and survival probability of first-year birds, although predicted growth rates were lower than those achieved by the recovery programme when all management measures were in place (i.e. 1992-95). 5. Synthesis and applications. We argue that scope for management analysis can provide a useful basis for management but will inevitably be limited to some extent by a lack of data, as our study shows. This means that identifying perceived ecological problems and designing management to alleviate them must be an important component of endangered species management. The corollary of this is that it will not be possible or wise to consider only management options for which there is a demonstrable ecological benefit. Given these constraints, we see little role for elasticity analysis because, when data are available, a scope for management analysis will always be of greater practical value and, when data are lacking, precautionary management demands that as many perceived ecological problems as possible are tackled.
Resumo:
We study the asymptotic behaviour of the principal eigenvalue of a Robin (or generalised Neumann) problem with a large parameter in the boundary condition for the Laplacian in a piecewise smooth domain. We show that the leading asymptotic term depends only on the singularities of the boundary of the domain, and give either explicit expressions or two-sided estimates for this term in a variety of situations.
Resumo:
A tribute to Robin Wood, focusing on his influence on horror criticism, and more specifically, on his appraisal of George A. Romero as ‘a great and audacious filmmaker’ through detailed consideration of his zombie movies. The article considers the key elements of his extraordinary influence on horror criticism, and a detailed examination of the monster which most directly responds to horror’s potential ambivalence: the zombie. In order to consider the ambivalence in the relationship between normality and the monster – that central and most important component of Wood’s horror criticism – created by Romero’s zombies, analysis focuses on the materiality of the films through close attention to the bodies on-screen.
Resumo:
The banded organization of clouds and zonal winds in the atmospheres of the outer planets has long fascinated observers. Several recent studies in the theory and idealized modeling of geostrophic turbulence have suggested possible explanations for the emergence of such organized patterns, typically involving highly anisotropic exchanges of kinetic energy and vorticity within the dissipationless inertial ranges of turbulent flows dominated (at least at large scales) by ensembles of propagating Rossby waves. The results from an attempt to reproduce such conditions in the laboratory are presented here. Achievement of a distinct inertial range turns out to require an experiment on the largest feasible scale. Deep, rotating convection on small horizontal scales was induced by gently and continuously spraying dense, salty water onto the free surface of the 13-m-diameter cylindrical tank on the Coriolis platform in Grenoble, France. A “planetary vorticity gradient” or “β effect” was obtained by use of a conically sloping bottom and the whole tank rotated at angular speeds up to 0.15 rad s−1. Over a period of several hours, a highly barotropic, zonally banded large-scale flow pattern was seen to emerge with up to 5–6 narrow, alternating, zonally aligned jets across the tank, indicating the development of an anisotropic field of geostrophic turbulence. Using particle image velocimetry (PIV) techniques, zonal jets are shown to have arisen from nonlinear interactions between barotropic eddies on a scale comparable to either a Rhines or “frictional” wavelength, which scales roughly as (β/Urms)−1/2. This resulted in an anisotropic kinetic energy spectrum with a significantly steeper slope with wavenumber k for the zonal flow than for the nonzonal eddies, which largely follows the classical Kolmogorov k−5/3 inertial range. Potential vorticity fields show evidence of Rossby wave breaking and the presence of a “hyperstaircase” with radius, indicating instantaneous flows that are supercritical with respect to the Rayleigh–Kuo instability criterion and in a state of “barotropic adjustment.” The implications of these results are discussed in light of zonal jets observed in planetary atmospheres and, most recently, in the terrestrial oceans.
Resumo:
Radiation schemes in general circulation models currently make a number of simplifications when accounting for clouds, one of the most important being the removal of horizontal inhomogeneity. A new scheme is presented that attempts to account for the neglected inhomogeneity by using two regions of cloud in each vertical level of the model as opposed to one. One of these regions is used to represent the optically thinner cloud in the level, and the other represents the optically thicker cloud. So, along with the clear-sky region, the scheme has three regions in each model level and is referred to as “Tripleclouds.” In addition, the scheme has the capability to represent arbitrary vertical overlap between the three regions in pairs of adjacent levels. This scheme is implemented in the Edwards–Slingo radiation code and tested on 250 h of data from 12 different days. The data are derived from cloud retrievals using radar, lidar, and a microwave radiometer at Chilbolton, southern United Kingdom. When the data are grouped into periods equivalent in size to general circulation model grid boxes, the shortwave plane-parallel albedo bias is found to be 8%, while the corresponding bias is found to be less than 1% using Tripleclouds. Similar results are found for the longwave biases. Tripleclouds is then compared to a more conventional method of accounting for inhomogeneity that multiplies optical depths by a constant scaling factor, and Tripleclouds is seen to improve on this method both in terms of top-of-atmosphere radiative flux biases and internal heating rates.