62 resultados para Risk assessment Mathematical models
Resumo:
Models of windblown pollen or spore movement are required to predict gene flow from genetically modified (GM) crops and the spread of fungal diseases. We suggest a simple form for a function describing the distance moved by a pollen grain or fungal spore, for use in generic models of dispersal. The function has power-law behaviour over sub-continental distances. We show that air-borne dispersal of rapeseed pollen in two experiments was inconsistent with an exponential model, but was fitted by power-law models, implying a large contribution from distant fields to the catches observed. After allowance for this 'background' by applying Fourier transforms to deconvolve the mixture of distant and local sources, the data were best fit by power-laws with exponents between 1.5 and 2. We also demonstrate that for a simple model of area sources, the median dispersal distance is a function of field radius and that measurement from the source edge can be misleading. Using an inverse-square dispersal distribution deduced from the experimental data and the distribution of rapeseed fields deduced by remote sensing, we successfully predict observed rapeseed pollen density in the city centres of Derby and Leicester (UK).
Resumo:
Abstract: Following a workshop exercise, two models, an individual-based landscape model (IBLM) and a non-spatial life-history model were used to assess the impact of a fictitious insecticide on populations of skylarks in the UK. The chosen population endpoints were abundance, population growth rate, and the chances of population persistence. Both models used the same life-history descriptors and toxicity profiles as the basis for their parameter inputs. The models differed in that exposure was a pre-determined parameter in the life-history model, but an emergent property of the IBLM, and the IBLM required a landscape structure as an input. The model outputs were qualitatively similar between the two models. Under conditions dominated by winter wheat, both models predicted a population decline that was worsened by the use of the insecticide. Under broader habitat conditions, population declines were only predicted for the scenarios where the insecticide was added. Inputs to the models are very different, with the IBLM requiring a large volume of data in order to achieve the flexibility of being able to integrate a range of environmental and behavioural factors. The life-history model has very few explicit data inputs, but some of these relied on extensive prior modelling needing additional data as described in Roelofs et al.(2005, this volume). Both models have strengths and weaknesses; hence the ideal approach is that of combining the use of both simple and comprehensive modeling tools.
Resumo:
High resolution descriptions of plant distribution have utility for many ecological applications but are especially useful for predictive modelling of gene flow from transgenic crops. Difficulty lies in the extrapolation errors that occur when limited ground survey data are scaled up to the landscape or national level. This problem is epitomized by the wide confidence limits generated in a previous attempt to describe the national abundance of riverside Brassica rapa (a wild relative of cultivated rapeseed) across the United Kingdom. Here, we assess the value of airborne remote sensing to locate B. rapa over large areas and so reduce the need for extrapolation. We describe results from flights over the river Nene in England acquired using Airborne Thematic Mapper (ATM) and Compact Airborne Spectrographic Imager (CASI) imagery, together with ground truth data. It proved possible to detect 97% of flowering B. rapa on the basis of spectral profiles. This included all stands of plants that occupied >2m square (>5 plants), which were detected using single-pixel classification. It also included very small populations (<5 flowering plants, 1-2m square) that generated mixed pixels, which were detected using spectral unmixing. The high detection accuracy for flowering B. rapa was coupled with a rather large false positive rate (43%). The latter could be reduced by using the image detections to target fieldwork to confirm species identity, or by acquiring additional remote sensing data such as laser altimetry or multitemporal imagery.
Resumo:
A wide variety of exposure models are currently employed for health risk assessments. Individual models have been developed to meet the chemical exposure assessment needs of Government, industry and academia. These existing exposure models can be broadly categorised according to the following types of exposure source: environmental, dietary, consumer product, occupational, and aggregate and cumulative. Aggregate exposure models consider multiple exposure pathways, while cumulative models consider multiple chemicals. In this paper each of these basic types of exposure model are briefly described, along with any inherent strengths or weaknesses, with the UK as a case study. Examples are given of specific exposure models that are currently used, or that have the potential for future use, and key differences in modelling approaches adopted are discussed. The use of exposure models is currently fragmentary in nature. Specific organisations with exposure assessment responsibilities tend to use a limited range of models. The modelling techniques adopted in current exposure models have evolved along distinct lines for the various types of source. In fact different organisations may be using different models for very similar exposure assessment situations. This lack of consistency between exposure modelling practices can make understanding the exposure assessment process more complex, can lead to inconsistency between organisations in how critical modelling issues are addressed (e.g. variability and uncertainty), and has the potential to communicate mixed messages to the general public. Further work should be conducted to integrate the various approaches and models, where possible and regulatory remits allow, to get a coherent and consistent exposure modelling process. We recommend the development of an overall framework for exposure and risk assessment with common approaches and methodology, a screening tool for exposure assessment, collection of better input data, probabilistic modelling, validation of model input and output and a closer working relationship between scientists and policy makers and staff from different Government departments. A much increased effort is required is required in the UK to address these issues. The result will be a more robust, transparent, valid and more comparable exposure and risk assessment process. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Current measures used to estimate the risks of toxic chemicals are not relevant to the goals of the environmental protection process, and thus ecological risk assessment (ERA) is not used as extensively as it should be as a basis for cost-effective management of environmental resources. Appropriate population models can provide a powerful basis for expressing ecological risks that better inform the environmental management process and thus that are more likely to be used by managers. Here we provide at least five reasons why population modeling should play an important role in bridging the gap between what we measure and what we want to protect. We then describe six actions needed for its implementation into management-relevant ERA.
Resumo:
Risk assessment for mammals is currently based on external exposure measurements, but effects of toxicants are better correlated with the systemically available dose than with the external administered dose. So for risk assessment of pesticides, toxicokinetics should be interpreted in the context of potential exposure in the field taking account of the timescale of exposure and individual patterns of feeding. Internal concentration is the net result of absorption, distribution, metabolism and excretion (ADME). We present a case study for thiamethoxam to show how data from ADME study on rats can be used to parameterize a body burden model which predicts body residue levels after exposures to LD50 dose either as a bolus or eaten at different feeding rates. Kinetic parameters were determined in male and female rats after an intravenous and oral administration of 14C labelled by fitting one-compartment models to measured pesticide concentrations in blood for each individual separately. The concentration of thiamethoxam in blood over time correlated closely with concentrations in other tissues and so was considered representative of pesticide concentration in the whole body. Body burden model simulations showed that maximum body weight-normalized doses of thiamethoxam were lower if the same external dose was ingested normally than if it was force fed in a single bolus dose. This indicates lower risk to rats through dietary exposure than would be estimated from the bolus LD50. The importance of key questions that should be answered before using the body burden approach in risk assessment, data requirements and assumptions made in this study are discussed in detail.
Resumo:
Periods between predator detection and an escape response (escape delays) by prey upon attack by a predator often arise because animals trade-off the benefits such a delay gives for assessing risk accurately with the costs of not escaping as quickly as possible. We tested whether freezing behaviour (complete immobility in a previously foraging bird) observed in chaffinches before escaping from an approaching potential threat functions as a period of risk-assessment, and whether information on predator identity is gained even when time available is very short. We flew either a model of a sparrowhawk (predator) or a woodpigeon (no threat) at single chaffinches. Escape delays were significantly shorter with the hawk, except when a model first appeared close to the chaffinch. Chaffinches were significantly more vigilant when they resumed feeding after exposure to the sparrowhawk compared to the woodpigeon showing that they were able to distinguish between threats, and this applied even when time available for assessment was short (an average of 0.29 s). Our results show freezing in chaffinches functions as an effective economic risk assessment period, and that threat information is gained even when very short periods of time are available during an attack.
Resumo:
Foot and mouth disease (FMD) is a major threat, not only to countries whose economies rely on agricultural exports, but also to industrialised countries that maintain a healthy domestic livestock industry by eliminating major infectious diseases from their livestock populations. Traditional methods of controlling diseases such as FMD require the rapid detection and slaughter of infected animals, and any susceptible animals with which they may have been in contact, either directly or indirectly. During the 2001 epidemic of FMD in the United Kingdom (UK), this approach was supplemented by a culling policy driven by unvalidated predictive models. The epidemic and its control resulted in the death of approximately ten million animals, public disgust with the magnitude of the slaughter, and political resolve to adopt alternative options, notably including vaccination, to control any future epidemics. The UK experience provides a salutary warning of how models can be abused in the interests of scientific opportunism.
Resumo:
High resolution descriptions of plant distribution have utility for many ecological applications but are especially useful for predictive modeling of gene flow from transgenic crops. Difficulty lies in the extrapolation errors that occur when limited ground survey data are scaled up to the landscape or national level. This problem is epitomized by the wide confidence limits generated in a previous attempt to describe the national abundance of riverside Brassica rapa (a wild relative of cultivated rapeseed) across the United Kingdom. Here, we assess the value of airborne remote sensing to locate B. rapa over large areas and so reduce the need for extrapolation. We describe results from flights over the river Nene in England acquired using Airborne Thematic Mapper (ATM) and Compact Airborne Spectrographic Imager (CASI) imagery, together with ground truth data. It proved possible to detect 97% of flowering B. rapa on the basis of spectral profiles. This included all stands of plants that occupied >2m square (>5 plants), which were detected using single-pixel classification. It also included very small populations (<5 flowering plants, 1-2m square) that generated mixed pixels, which were detected using spectral unmixing. The high detection accuracy for flowering B. rapa was coupled with a rather large false positive rate (43%). The latter could be reduced by using the image detections to target fieldwork to confirm species identity, or by acquiring additional remote sensing data such as laser altimetry or multitemporal imagery.
Resumo:
We developed a stochastic simulation model incorporating most processes likely to be important in the spread of Phytophthora ramorum and similar diseases across the British landscape (covering Rhododendron ponticum in woodland and nurseries, and Vaccinium myrtillus in heathland). The simulation allows for movements of diseased plants within a realistically modelled trade network and long-distance natural dispersal. A series of simulation experiments were run with the model, representing an experiment varying the epidemic pressure and linkage between natural vegetation and horticultural trade, with or without disease spread in commercial trade, and with or without inspections-with-eradication, to give a 2 x 2 x 2 x 2 factorial started at 10 arbitrary locations spread across England. Fifty replicate simulations were made at each set of parameter values. Individual epidemics varied dramatically in size due to stochastic effects throughout the model. Across a range of epidemic pressures, the size of the epidemic was 5-13 times larger when commercial movement of plants was included. A key unknown factor in the system is the area of susceptible habitat outside the nursery system. Inspections, with a probability of detection and efficiency of infected-plant removal of 80% and made at 90-day intervals, reduced the size of epidemics by about 60% across the three sectors with a density of 1% susceptible plants in broadleaf woodland and heathland. Reducing this density to 0.1% largely isolated the trade network, so that inspections reduced the final epidemic size by over 90%, and most epidemics ended without escape into nature. Even in this case, however, major wild epidemics developed in a few percent of cases. Provided the number of new introductions remains low, the current inspection policy will control most epidemics. However, as the rate of introduction increases, it can overwhelm any reasonable inspection regime, largely due to spread prior to detection. (C) 2009 Elsevier B.V. All rights reserved.