21 resultados para Resonances, Orbital
Resumo:
In this work preliminary results are reported on an extensive vibrational analysis of the molecules HCCX and DCCX with X = F and Cl, in which a number of anharmonic resonances are analysed. The importance of quartic anharmonic resonances in these molecular types is reported involving the effective constants K1244 and K1255, and these are related to the corresponding resonances in acetylene and its isotopomers. The correct analysis of Fermi resonances and quartic anharmonic resonances is important not only in reproducing the high overtone energy levels, but also in fitting the observed rotational constants, and in determining the αr constants and hence the equilibrium rotational constants. In this paper we revise our recent analysis of the equilibrium structure of HCCF in the light of these effects.
Resumo:
High resolution vibration-rotation spectra of 13C2H2 were recorded in a number of regions from 2000 to 5200 cm−1 at Doppler or pressure limited resolution. In these spectral ranges cold and hot bands involving the bending-stretching combination levels have been analyzed up to high J values. Anharmonic quartic resonances for the combination levels ν1 + mν4 + nν5, ν2 + mν4 + (n + 2) ν5 and ν3 + (m − 1) ν4 + (n + 1) ν5 have been studied, and the l-type resonances within each polyad have been explicitly taken into account in the analysis of the data. The least-squares refinement provides deperturbed values for band origins and rotational constants, obtained by fitting rotation lines only up to J ≈ 20 with root mean square errors of ≈ 0.0003 cm−1. The band origins allowed us to determine a number of the anharmonicity constants xij0.
Resumo:
Formulas are derived for the quartic anharmonic resonance coefficients observed to be important between C–H stretching and the combination of one quantum of C≡C stretching and two quanta of H–C≡C bending in a number of acetylene molecules. Examples of this resonance are ν3 with ν2+ν4+ν5 in 12C2H2, ν1 with ν2+2ν5 in 13C2H2, and ν1 with ν2+2ν4 in monofluoroacetylene and monochloroacetylene. The coefficients characterizing the resonances in these examples, which we denote K3,245, K1,255, and K1,244, arise from cubic and quartic terms in the anharmonic force field, in the normal coordinate representation, through second order and first order perturbation treatments respectively, where the second order resonances are calculated by a Van Vleck resonance formalism. The experimentally determined values of these coefficients are compared with values calculated from model anharmonic force fields.
Resumo:
The kinetics of the reactions of the atoms O(P-3), S(P-3), Se(P-3), and Te((3)p) with a series of alkenes are examined for correlations relating the logarithms of the rate coefficients to the energies of the highest occupied molecular orbitals (HOMOs) of the alkenes. These correlations may be employed to predict rate coefficients from the calculated HOMO energy of any other alkene of interest. The rate coefficients obtained from the correlations were used to formulate structure-activity relations (SARs) for reactions of O((3)p), S(P-3), Se (P-3), and Te((3)p) with alkenes. A comparison of the values predicted by both the correlations and the SARs with experimental data where they exist allowed us to assess the reliability of our method. We demonstrate the applicability of perturbation frontier molecular orbital theory to gas-phase reactions of these atoms with alkenes. The correlations are apparently not applicable to reactions of C(P-3), Si(P-3), N(S-4), and Al(P-2) atoms with alkenes, a conclusion that could be explained in terms of a different mechanism for reaction of these atoms.
Resumo:
A new approach is presented for the solution of spectral problems on infinite domains with regular ends, which avoids the need to solve boundary-value problems for many trial values of the spectral parameter. We present numerical results both for eigenvalues and for resonances, comparing with results reported by Aslanyan, Parnovski and Vassiliev.
Resumo:
Activation induced deaminase (AID) deaminates cytosine to uracil, which is required for a functional humoral immune system. Previous work demonstrated, that AID also deaminates 5-methylcytosine (5 mC). Recently, a novel vertebrate modification (5-hydroxymethylcytosine - 5 hmC) has been implicated in functioning in epigenetic reprogramming, yet no molecular pathway explaining the removal of 5 hmC has been identified. AID has been suggested to deaminate 5 hmC, with the 5 hmU product being repaired by base excision repair pathways back to cytosine. Here we demonstrate that AID’s enzymatic activity is inversely proportional to the electron cloud size of C5-cytosine - H . F . methyl .. hydroxymethyl. This makes AID an unlikely candidate to be part of 5 hmC removal.
Resumo:
The Fourier series can be used to describe periodic phenomena such as the one-dimensional crystal wave function. By the trigonometric treatements in Hückel theory it is shown that Hückel theory is a special case of Fourier series theory. Thus, the conjugated π system is in fact a periodic system. Therefore, it can be explained why such a simple theorem as Hückel theory can be so powerful in organic chemistry. Although it only considers the immediate neighboring interactions, it implicitly takes account of the periodicity in the complete picture where all the interactions are considered. Furthermore, the success of the trigonometric methods in Hückel theory is not accidental, as it based on the fact that Hückel theory is a specific example of the more general method of Fourier series expansion. It is also important for education purposes to expand a specific approach such as Hückel theory into a more general method such as Fourier series expansion.
Resumo:
The response of monsoon circulation in the northern and southern hemisphere to 6 ka orbital forcing has been examined in 17 atmospheric general circulation models and 11 coupled ocean–atmosphere general circulation models. The atmospheric response to increased summer insolation at 6 ka in the northern subtropics strengthens the northern-hemisphere summer monsoons and leads to increased monsoonal precipitation in western North America, northern Africa and China; ocean feedbacks amplify this response and lead to further increase in monsoon precipitation in these three regions. The atmospheric response to reduced summer insolation at 6 ka in the southern subtropics weakens the southern-hemisphere summer monsoons and leads to decreased monsoonal precipitation in northern South America, southern Africa and northern Australia; ocean feedbacks weaken this response so that the decrease in rainfall is smaller than might otherwise be expected. The role of the ocean in monsoonal circulation in other regions is more complex. There is no discernable impact of orbital forcing in the monsoon region of North America in the atmosphere-only simulations but a strong increase in precipitation in the ocean–atmosphere simulations. In contrast, there is a strong atmospheric response to orbital forcing over northern India but ocean feedback reduces the strength of the change in the monsoon although it still remains stronger than today. Although there are differences in magnitude and exact location of regional precipitation changes from model to model, the same basic mechanisms are involved in the oceanic modulation of the response to orbital forcing and this gives rise to a robust ensemble response for each of the monsoon systems. Comparison of simulated and reconstructed changes in regional climate suggest that the coupled ocean–atmosphere simulations produce more realistic changes in the northern-hemisphere monsoons than atmosphere-only simulations, though they underestimate the observed changes in precipitation in all regions. Evaluation of the southern-hemisphere monsoons is limited by lack of quantitative reconstructions, but suggest that model skill in simulating these monsoons is limited.
Resumo:
The importance of orbital forcing and ocean impact on the Asian summer monsoon in the Holocene is investigated by comparing simulations with a fully coupled ocean–atmosphere general circulation model (FOAM) and with the atmospheric component of this model (FSSTAM) forced with prescribed modern sea-surface temperatures (SSTs). The results show: (1) the ocean amplifies the orbitally-induced increase in African monsoon precipitation, makes somewhat increase in southern India and damps the increase over the southeastern China. (2) The ocean could change the spatial distribution and local intensity of the orbitally-induced latitudinal atmospheric oscillation over the southeastern China and the subtropical western Pacific Ocean. (3) The orbital forcing mostly enhances the Asian summer precipitation in the FOAM and FSSTAM simulations. However, the ocean reduces the orbitally-induced summer precipitation and postpones the time of summer monsoon onset over the Asian monsoon region. (4) The orbital forcing considerably enhances the intensity of upper divergence, which is amplified by ocean further, over the eastern hemisphere. But the divergence is weaker in the FOAM simulations than in the FSSTAM simulations when the orbital forcing is fixed. (5) The orbital forcing can enhance the amplitude of precipitation variability over the subtropical Africa, the southeastern China and northwestern China, inversely, reduce it over central India and North China in the FOAM and FSSTAM simulations. The ocean obviously reduces the amplitude of precipitation variability over most of the Asian monsoon regions in the fixed orbital forcing simulations. (6) The areas characterized by increased summer precipitation in the long-term mean are mostly characterized by increased amplitude of short-term variability, whereas regions characterized by decreased precipitation are primarily characterized by decreased amplitude of short-term variability. However, the influences of orbital forcing or dynamical ocean on regional climate depend on the model.
Resumo:
Using 1D Vlasov drift-kinetic computer simulations, it is shown that electron trapping in long period standing shear Alfven waves (SAWs) provides an efficient energy sink for wave energy that is much more effective than Landau damping. It is also suggested that the plasma environment of low altitude auroral-zone geomagnetic field lines is more suited to electron acceleration by inertial or kinetic scale Alfven waves. This is due to the self-consistent response of the electron distribution function to SAWs, which must accommodate the low altitude large-scale current system in standing waves. We characterize these effects in terms of the relative magnitude of the wave phase and electron thermal velocities. While particle trapping is shown to be significant across a wide range of plasma temperatures and wave frequencies, we find that electron beam formation in long period waves is more effective in relatively cold plasma.
Resumo:
The response of ten atmospheric general circulation models to orbital forcing at 6 kyr BP has been investigated using the BIOME model, which predicts equilibrium vegetation distribution, as a diagnostic. Several common features emerge: (a) reduced tropical rain forest as a consequence of increased aridity in the equatorial zone, (b) expansion of moisture-demanding vegetation in the Old World subtropics as a consequence of the expansion of the Afro–Asian monsoon, (c) an increase in warm grass/shrub in the Northern Hemisphere continental interiors in response to warming and enhanced aridity, and (d) a northward shift in the tundra–forest boundary in response to a warmer growing season at high northern latitudes. These broadscale features are consistent from model to model, but there are differences in their expression at a regional scale. Vegetation changes associated with monsoon enhancement and high-latitude summer warming are consistent with palaeoenvironmental observations, but the simulated shifts in vegetation belts are too small in both cases. Vegetation changes due to warmer and more arid conditions in the midcontinents of the Northern Hemisphere are consistent with palaeoenvironmental data from North America, but data from Eurasia suggests conditions were wetter at 6 kyr BP than today. The models show quantitatively similar vegetation changes in the intertropical zone, and in the northern and southern extratropics. The small differences among models in the magnitude of the global vegetation response are not related to differences in global or zonal climate averages, but reflect differences in simulated regional features. Regional-scale analyses will therefore be necessary to identify the underlying causes of such differences among models.