48 resultados para Reflective multimodal narrative


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a reflective narrative of the process of designing a PhD project. Using the analogy of the play 'One Man, Two Guvnors' , this paper discusses the tensions a beginning researcher faces in reconciling her own vision for a project with the academic demands of doctoral-level study. Focusing on an ethnographic study of a reading group for visually-impaired people, the paper explores how the researcher's developing understanding of the considerations necessary when working with disabled people impacted on the research design. In particular, it focuses on the conflict faced by doctoral students when working in a paradigm that requires actively involving research participants, thereby relinquishing some control over the project. The aim of the paper is to provide an honest narrative that will resonate with other beginning researchers.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Past research into doll play narratives has been productive in elucidating children's inner experiences, their determinants, and their role in child behaviour problems. The current volume takes this work forward in several directions: first, it indicates the value of designing story stems and coding schemes to address more specific questions about the developmental process of specific syndromes. Second, contributions demonstrate the "added value" provided by children's narratives, over and above information derived from other sources. Third, this recent research enhances our understanding of the role of parental representations and states of mind in influencing children's narratives; how these may come to influence child functioning via co-constructed parent-child dialogues is an important area for future research. Finally, possibilities of extending the clinical utility of doll play narratives are explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel framework for multimodal semantic-associative collateral image labelling, aiming at associating image regions with textual keywords, is described. Both the primary image and collateral textual modalities are exploited in a cooperative and complementary fashion. The collateral content and context based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix, of the visual keywords, A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. Finally, we use Self Organising Maps to examine the classification and retrieval effectiveness of the proposed high-level image feature vector model which is constructed based on the image labelling results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel framework referred to as collaterally confirmed labelling (CCL) is proposed, aiming at localising the visual semantics to regions of interest in images with textual keywords. Both the primary image and collateral textual modalities are exploited in a mutually co-referencing and complementary fashion. The collateral content and context-based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix of the visual keywords. A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. We introduce a novel high-level visual content descriptor that is devised for performing semantic-based image classification and retrieval. The proposed image feature vector model is fundamentally underpinned by the CCL framework. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval, respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicate that the proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study examined: (a) the role of phonological, grammatical, and rapid automatized naming (RAN) skills in reading and spelling development; and (b) the component processes of early narrative writing skills. Fifty-seven Turkish-speaking children were followed from Grade 1 to Grade 2. RAN was the most powerful longitudinal predictor of reading speed and its effect was evident even when previous reading skills were taken into account. Broadly, the phonological and grammatical skills made reliable contributions to spelling performance but their effects were completely mediated by previous spelling skills. Different aspects of the narrative writing skills were related to different processing skills. While handwriting speed predicted writing fluency, spelling accuracy predicted spelling error rate. Vocabulary and working memory were the only reliable longitudinal predictors of the quality of composition content. The overall model, however, failed to explain any reliable variance in the structural quality of the compositions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a queue-based agent architecture for multimodal interfaces. Using a novel approach to intelligently organise both agents and input data, this system has the potential to outperform current state-of-the-art multimodal systems, while at the same time allowing greater levels of interaction and flexibility. This assertion is supported by simulation test results showing that significant improvements can be obtained over normal sequential agent scheduling architectures. For real usage, this translates into faster, more comprehensive systems, without the limited application domain that restricts current implementations.