32 resultados para Pygidial gland secretions
Resumo:
The bacterium from Pseudomonas putida from Steinernema abbasi and its metabolic secretions caused the mortality of the Galleria mellonella pupae. Experiments were conducted in sand and filter paper on time exposure, temperature, moisture, dose and time of penetration of bacterium in pupae and tested stored or dried toxic metabolites using G. mellonella pupae as a test target organism. Death of pupae was probably due to the toxic metabolites. Pseudomonas putida cells were recovered from the haemocoele when bacterial cells were applied to the G. mellonella pupae indicating that bacterial cells can enter the haemocoele in the absence of nematode vector. Penetration of bacterium was found rapidly after application on G. mellonella pupae. Pseudomonas putida or its toxic secretions can be used as a microbial control for insect control. The experimental results indicate that there is possibility of using P. putida and its toxic secretions as a biopesticide and can contribute in the development of new microbial and biological control against insect pests.
Resumo:
The entomopathogenic bacterium, Xenorhabdus nematophila was isolated from the hemolymph of Galleria mellonella infected with Steinernema carpocapsae. The bacterial cells and its metabolic secretions have been found lethal to the Galleria larvae. Toxic secretion in broth caused 95% mortality within 4 d of application whereas the bacterial cells caused 93% mortality after 6 d. When filter and sand substrates were compared, the later one was observed as appropriate. Similarly, bacterial cells and secretion in broth were more effective at 14% moisture and 25 °C temperature treatments. Maximum insect mortality (100%) was observed when bacterial concentration of 4×106 cells/ml was used. Similarly, maximum bacterial cells in broth (95%) were penetrated into the insect body within 2 h of their application. However, when stored bacterial toxic secretion was applied to the insects its efficacy declined. On the other hand, when the same toxic secretion was dried and then dissolved either in broth or water was proved to be effective. The present study showed that the bacterium, X. nematophila or its toxic secretion can be used as an important component of integrated pest management against Galleria.
Resumo:
Background: Serine proteases are major components of viper venom and target various stages of the blood coagulation system in victims and prey. A better understanding of the diversity of serine proteases and other enzymes present in snake venom will help to understand how the complexity of snake venom has evolved and will aid the development of novel therapeutics for treating snake bites. Methodology and Principal Findings: Four serine protease-encoding genes from the venom gland transcriptome of Bitis gabonica rhinoceros were amplified and sequenced. Mass spectrometry suggests the four enzymes corresponding to these genes are present in the venom of B. g. rhinoceros. Two of the enzymes, rhinocerases 2 and 3 have substitutions to two of the serine protease catalytic triad residues and are thus unlikely to be catalytically active, though they may have evolved other toxic functions. The other two enzymes, rhinocerases 4 and 5, have classical serine protease catalytic triad residues and thus are likely to be catalytically active, however they have glycine rather than the more typical aspartic acid at the base of the primary specificity pocket (position 189). Based on a detailed analysis of these sequences we suggest that alternative splicing together with individual amino acid mutations may have been involved in their evolution. Changes within amino acid segments which were previously proposed to undergo accelerated change in venom serine proteases have also been observed. Conclusions and Significance: Our study provides further insight into the diversity of serine protease isoforms present within snake venom and discusses their possible functions and how they may have evolved. These multiple serine protease isoforms with different substrate specificities may enhance the envenomation effects and help the snake to adapt to new habitats and diets. Our findings have potential for helping the future development of improved therapeutics for snake bites.
Resumo:
An isotope dilution model for partitioning phenylalanine and tyrosine uptake by the mammary gland of the lactating dairy cow is constructed and solved in the steady state. The model contains four intracellular and four extracellular pools and conservation of mass principles are applied to generate the fundamental equations describing the behaviour of the system. The experimental measurements required for model solution are milk secretion and plasma flow rate across the gland in combination with phenylalanine and tyrosine concentrations and plateau isotopic enrichments in arterial and venous plasma and free and protein bound milk during a constant infusion of [1-(13)C]phenylalanine and [2,3,5,6-(2)H]tyrosine tracer. If assumptions are made, model solution enables determination of steady state flows for phenylalanine and tyrosine inflow to the gland, outflow from it and bypass, and flows representing the synthesis and degradation of constitutive protein and hydroxylation. The model is effective in providing information about the fates of phenylalanine and tyrosine in the mammary gland and could be used as part of a more complex system describing amino acid metabolism in the whole ruminant.
Resumo:
Fundamental nutrition seeks to describe the complex biochemical reactions involved in assimilation and processing of nutrients by various tissues and organs, and to quantify nutrient movement (flux) through those processes. Over the last 25 yr, considerable progress has been made in increasing our understanding of metabolism in dairy cattle. Major advances have been made at all levels of biological organization, including the whole animal, organ systems, tissues, cells, and molecules. At the whole-animal level, progress has been made in delineating metabolism during late pregnancy and the transition to lactation, as well as in whole-body use of energy-yielding substrates and amino acids for growth in young calves. An explosion of research using multicatheterization techniques has led to better quantitative descriptions of nutrient use by tissues of the portal-drained viscera (digestive tract, pancreas, and associated adipose tissues) and liver. Isolated tissue preparations have provided important information on the interrelationships among glucose, fatty acid, and amino acid metabolism in liver, adipose tissue, and mammary gland, as well as the regulation of these pathways during different physiological states. Finally, the last 25 yr has witnessed the birth of "molecular biology" approaches to understanding fundamental nutrition. Although measurements of mRNA abundance for proteins of interest already have provided new insights into regulation of metabolism, the next 25 yr will likely see remarkable advances as these techniques continue to be applied to problems of dairy cattle biology. Integration of the "omics" technologies (functional genomics, proteomics, and metabolomics) with measurements of tissue metabolism obtained by other methods is a particularly exciting prospect for the future. The result should be improved animal health and well being, more efficient dairy production, and better models to predict nutritional requirements and provide rations to meet those requirements.
Resumo:
Cells of the bacterial symbiont Xenorhabdus nematophila from the entomopathogenic nematode, Steinernema carpocapsae entered the pupae of Plutella xylostella after 15 minutes treatment with suspensions containing the bacterial cells. Secretions of Xenorhabdus nematophila, in either broth or water, were found lethal to the pupae of P. xylostella when applied in moist sand. The bacterial symbiont Xenorhabdus nematophila was found lethal to the pupae of greater wax moth (Galleria mellonella), beet armyworm (Spodoptera exigua), diamondback moth (Plutella xylostella) and black vine weevil (Otiorhynchus sulcatus) in the absence of the nematode vector and the cells of X. nematophila entered the haemocoele of the pupae.
Resumo:
The Entomopathogenic bacterium Pseudomonas putida from Steinernema abbasi and its metabolic secretions were lethal to the Galleria mellonella larvae. Different laboratory experiments on time interval, substrate, moisture, temperature, dose, penetration of cells, stored and dried metabolites were conducted in sand and filter paper bioassays. It was concluded that death was probably due to the toxic metabolites. This bacterium and its metabolites were found very effective at 30 degree C. Penetration of bacterium was rapid after application on G. mellonella larvae. P. putida cells were recovered from the haemocoele when suspensions containing bacterial cells were applied to the G. mellonella indicating that bacterial symbionts do have a free-living existence and can enter the haemocoele in the absence of nematode vector. Stored metabolite and dried metabolites were found persistent for long time. This bacterium or its toxic secretions can be used for insect control that can be important component of integrated pest management against different insect pests. P. putida and its secretions are suggested as the most appropriate suspension to apply against insect pest control program in tropical ecological regions.
Resumo:
Antral follicle growth in cattle occurs in two distinct phases; the first 'slow' growth phase spans the time from antrum acquisition to a size of approximately 3 mm detectable by transrectal ultrasound, and the second 'fast' phase is gondadotrophin-dependent and includes cohort growth, dominant follicle (DF) selection, and DF growth. This review summarises current concepts of the relative roles FSH and LH, ovarian and metabolic hormones play mainly in the second phase of antral follicle growth in animals of different reproductive and nutritional states. It is proposed that differential FSH response may enable one cohort follicle to become selected, and that follicular secretions, particularly inhibin, suppress FSH and thus are responsible for DF selection and dominance. Acute dependence of the DF on LH pulses will determine DF lifespan, and the LH pulse profile can be influenced by metabolic hormones such as leptin, providing one possible link for nutritional state and reproduction. Direct ovarian effects of acute and chronic changes in growth hormone, insulin and insulin-like growth factor (IGF)-I have been described on cohort follicles, DF oestrogen activity and on DF growth. Influences of metabolic hormones on early antral follicles undergoing their first 'slow' growth phase are less well described, yet metabolic hormones appear to enhance growth into the cohort available for FSH-induced emergence, and may influence subsequent developmental competence of oocytes. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The ability of PCR to detect infections of Theileria parva, the cause of East Coast Fever, in field-collected tick and bovine samples from Tanzania was evaluated. PCR-detected infection prevalence was high (15/20, 75%) in unfed adult Rhipicephalus appendiculatus ticks that fed as nymphs on an acutely-infected calf, but low (22/836, 2.6%) in unfed adult R. appendiculatus collected from field sites in Tanzania. Tick infection prevalence was comparable to that in previous studies that used salivary gland staining to detect T parva infection in field-collected host-seeking ticks. Of 282 naturally-exposed zebu calves, seven had PCR-positive buffy coat samples prior to detection of Theileria spp. parasites in stained huffy coat cells or lymph node biopsies. Evidence of Theileria spp. infections was detected in stained smears of lymph node biopsies from 109 calves (38.6%) and huffy coat samples from 81 (28.7%), while huffy coat samples from 66 (23.4%) were PCR-positive for T parva. Implications of these findings for the sensitivity and specificity of the PCR are discussed. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Lys-gamma 3-MSH is a melanocortin peptide derived from the C-terminal of the 16 kDa fragment of POMC. The physiological role of Lys-gamma 3-MSH is unclear, although it has previously been shown that, although not directly steroidogenic, it can act to potentiate the steroidogenic response of adrenal cortical cells to ACTH. This synergistic effect appears to be correlated with an ability to increase the activity of hormone sensitive lipase (HSL) and therefore the rate of cholesterol ester hydrolysis. Ligand binding studies have suggested that high-affinity binding sites for Lys-gamma 3-MSH exist in the adrenal gland and a number of other rat tissues that express HSL, including adipose, skeletal muscle and testes. To investigate the hypothesis that Lys-gamma 3-MSH may play a wider role in cholesterol and lipid metabolism, we tested the effect of Lys-gamma 3-MSH on lipolysis, an HSL-mediated process, in 3T3-L1 adipocytes. In comparison with other melanocortin peptides, Lys-gamma 3-MSH was found to be a potent stimulator of lipolysis. It was also able to phosphorylate HSL at key serine residues and stimulate the hyper-phosphorylation of perilipin A. The receptor through which the lipolytic actions of Lys-gamma 3-MSH are being mediated is not clear. Attempts to characterise this receptor suggest that either the pharmacology of the melanocortin receptor 5 in 3T3-L1 adipocytes is different from that described when expressed in heterologous systems or the possibility that a further, as yet uncharacterised, receptor exists.
Resumo:
Secretion of LH and FSH from the anterior pituitary is regulated primarily by hypothalamic GnRH and ovarian steroid hormones. More recent evidence indicates regulatory roles for certain members of the transforming growth factor beta (TGF beta) superfamily including inhibin and activin. The aim of this study was to identify expression of mRNAs encoding key receptors and ligands of the inhibin/activin system in the hen pituitary gland and to monitor their expression throughout the 24-25-h ovulatory cycle. Hens maintained on long days (16 h light/8 h dark) were killed 20, 12, 6 and 2 h before predicted ovulation of a midsequence egg (n = 8 per group). Anterior pituitary glands were removed, RNA extracted and cDNA synthesized. Plasma concentrations of LH, FSH, progesterone and inhibin A were measured. Real-time quantitative PCR was used to quantify pituitary expression of mRNAs encoding betaglycan, activin receptor (ActR) subtypes (type I, IIA), GnRH receptor (GnP,H-R), LH beta subunit, FSH beta subunit and GAPDH. Levels of mRNA for inhibin/activin beta A and beta B subunits, inhibin alpha subunit, follistatin and ActRIIB mRNA in pituitary were undetectable by quantitative PCR (< 2 amol/reaction). Significant changes in expression (P < 0.05) of ActRIIA and betaglycan mRNA were found, both peaking 6 h before ovulation just prior to the preovulatory LH surge and reaching a nadir 2 h before ovulation, just after the LH surge. There were no significant changes in expression of ActRI mRNA throughout the cycle although values were correlated with mRNA levels for both ActRIIA (r=0.77; P < 0.001) and betaglycan (r=0.45; P < 0.01). Expression of GnRH-R mRNA was lowest 20 h before ovulation and highest (P < 0.05) 6 h before ovulation; values were weakly correlated with betaglycan (r=0.33; P=0.06) and ActRIIA (r=0.34; P=0.06) mRNA levels. Expression of mRNAs encoding LH beta and FSH beta subunit were both lowest (P < 0.05) after the LH surge, 2 h before ovulation. These results are consistent with an endocrine, but not a local intrapituitary, role of inhibin-related proteins in modulating gonadotroph function during the ovulatory cycle of the hen, potentially through interaction with betaglycan and ActRIIA. In contrast to mammals, intrapituitary expression of inhibin/activin subunits and follistatin appears to be extremely low or absent in the domestic fowl.
Resumo:
To further elucidate the role of proteases capable of cleaving N-terminal proopiomelanocortin (N-POMC)-derived peptides, we have cloned two cDNAs encoding isoforms of the airway trypsin-like protease (AT) from mouse (MAT) and rat ( RAT), respectively. The open reading frames comprise 417 amino acids (aa) and 279 aa. The mouse AT gene was located at chromosome 5E1 and contains 10 exons. The longer isoform, which we designated MAT1 and RAT1, has a simple type II transmembrane protein structure, consisting of a short cytoplasmic domain, a transmembrane domain, a SEA (63-kDa sea urchin sperm protein, enteropeptidase, agrin) module, and a serine protease domain. The human homolog of MAT1 and RAT1 is the human AT ( HAT). The shorter isoform, designated MAT2 and RAT2, which contains an alternative N terminus, was formerly described in the rat as adrenal secretory serine protease (AsP) and has been shown to be involved in the processing of N-POMC-derived peptides. In contrast to the long isoform, neither MAT2 and RAT2 ( AsP) contain a transmembrane domain nor a SEA domain but an N-terminal signal peptide to direct the enzyme to the secretory pathway. The C terminus, covering the catalytic triad, is identical in both isoforms. Immunohistochemically, MAT/RAT was predominantly expressed in tissues of the upper gastrointestinal and the respiratory tract - but also in the adrenal gland. Moreover, isoform-specific RT-PCR and quantitative PCR analysis revealed a complex expression pattern of the two isoforms with differences between mice and rats. These findings indicate a multifunctional role of these proteases beyond adrenal proliferation.