46 resultados para Present and future effects
Resumo:
Observations and numerical modelling experiments provide evidence for links between variability in the Atlantic Meridional Overturning Circulation (AMOC) and global climate patterns. Reduction in the strength of the overturning circulation is thought to have played a key role in rapid climate change in the past and may have the potential to significantly influence climate change in the future, as noted in the last two IPCC assessment reports (2001, 2007). Both IPCC reports also highlighted the significant uncertainties that exist regarding the future behaviour of the AMOC under global warming. Model results suggest that changes in the AMOC can impact surface air temperature, precipitation patterns and sea level, particularly in areas bordering the North Atlantic, thus affecting human populations. Here current understanding of past, present and future change in the AMOC and the effects of such changes on climate are reviewed. The focus is on observations of the AMOC, how the AMOC influences climate and in what way the AMOC is likely to change over the next few decades and the 21st 34 century. The potential for decadal prediction of the AMOC is also discussed. Finally, the outstanding challenges and possible future directions for AMOC research are outlined.
Resumo:
Modern neurostimulation approaches in humans provide controlled inputs into the operations of cortical regions, with highly specific behavioral consequences. This enables causal structure–function inferences, and in combination with neuroimaging, has provided novel insights into the basic mechanisms of action of neurostimulation on dis- tributed networks. For example,more recent work has established the capacity of transcranialmagnetic stimulation (TMS) to probe causal interregional influences, and their interaction with cognitive state changes. Combinations of neurostimulation and neuroimaging now face the challenge of integrating the known physiological effects of neu- rostimulationwith theoretical and biologicalmodels of cognition, for example,when theoretical stalemates between opposing cognitive theories need to be resolved. This will be driven by novel developments, including biologically informedcomputational network analyses for predicting the impactofneurostimulationonbrainnetworks, as well as novel neuroimaging and neurostimulation techniques. Such future developments may offer an expanded set of tools withwhich to investigate structure–function relationships, and to formulate and reconceptualize testable hypotheses about complex neural network interactions and their causal roles in cognition
Resumo:
Anthropogenic changes in precipitation pose a serious threat to society—particularly in regions such as the Middle East that already face serious water shortages. However, climate model projections of regional precipitation remain highly uncertain. Moreover, standard resolution climate models have particular difficulty representing precipitation in the Middle East, which is modulated by complex topography, inland water bodies and proximity to the Mediterranean Sea. Here we compare precipitation changes over the twenty-first century against both millennial variability during the Holocene and interannual variability in the present day. In order to assess the climate model and to make consistent comparisons, this study uses new regional climate model simulations of the past, present and future in conjunction with proxy and historical observations. We show that the pattern of precipitation change within Europe and the Middle East projected by the end of the twenty-first century has some similarities to that which occurred during the Holocene. In both cases, a poleward shift of the North Atlantic storm track and a weakening of the Mediterranean storm track appear to cause decreased winter rainfall in southern Europe and the Middle East and increased rainfall further north. In contrast, on an interannual time scale, anomalously dry seasons in the Middle East are associated with a strengthening and focusing of the storm track in the north Mediterranean and hence wet conditions throughout southern Europe.
Resumo:
Mainframes, corporate and central servers are becoming information servers. The requirement for more powerful information servers is the best opportunity to exploit the potential of parallelism. ICL recognized the opportunity of the 'knowledge spectrum' namely to convert raw data into information and then into high grade knowledge. Parallel Processing and Data Management Its response to this and to the underlying search problems was to introduce the CAFS retrieval engine. The CAFS product demonstrates that it is possible to move functionality within an established architecture, introduce a different technology mix and exploit parallelism to achieve radically new levels of performance. CAFS also demonstrates the benefit of achieving this transparently behind existing interfaces. ICL is now working with Bull and Siemens to develop the information servers of the future by exploiting new technologies as available. The objective of the joint Esprit II European Declarative System project is to develop a smoothly scalable, highly parallel computer system, EDS. EDS will in the main be an SQL server and an information server. It will support the many data-intensive applications which the companies foresee; it will also support application-intensive and logic-intensive systems.
Resumo:
This is the first of two articles presenting a detailed review of the historical evolution of mathematical models applied in the development of building technology, including conventional buildings and intelligent buildings. After presenting the technical differences between conventional and intelligent buildings, this article reviews the existing mathematical models, the abstract levels of these models, and their links to the literature for intelligent buildings. The advantages and limitations of the applied mathematical models are identified and the models are classified in terms of their application range and goal. We then describe how the early mathematical models, mainly physical models applied to conventional buildings, have faced new challenges for the design and management of intelligent buildings and led to the use of models which offer more flexibility to better cope with various uncertainties. In contrast with the early modelling techniques, model approaches adopted in neural networks, expert systems, fuzzy logic and genetic models provide a promising method to accommodate these complications as intelligent buildings now need integrated technologies which involve solving complex, multi-objective and integrated decision problems.
Resumo:
This article is the second part of a review of the historical evolution of mathematical models applied in the development of building technology. The first part described the current state of the art and contrasted various models with regard to the applications to conventional buildings and intelligent buildings. It concluded that mathematical techniques adopted in neural networks, expert systems, fuzzy logic and genetic models, that can be used to address model uncertainty, are well suited for modelling intelligent buildings. Despite the progress, the possible future development of intelligent buildings based on the current trends implies some potential limitations of these models. This paper attempts to uncover the fundamental limitations inherent in these models and provides some insights into future modelling directions, with special focus on the techniques of semiotics and chaos. Finally, by demonstrating an example of an intelligent building system with the mathematical models that have been developed for such a system, this review addresses the influences of mathematical models as a potential aid in developing intelligent buildings and perhaps even more advanced buildings for the future.
Resumo:
The intensity and distribution of daily precipitation is predicted to change under scenarios of increased greenhouse gases (GHGs). In this paper, we analyse the ability of HadCM2, a general circulation model (GCM), and a high-resolution regional climate model (RCM), both developed at the Met Office's Hadley Centre, to simulate extreme daily precipitation by reference to observations. A detailed analysis of daily precipitation is made at two UK grid boxes, where probabilities of reaching daily thresholds in the GCM and RCM are compared with observations. We find that the RCM generally overpredicts probabilities of extreme daily precipitation but that, when the GCM and RCM simulated values are scaled to have the same mean as the observations, the RCM captures the upper-tail distribution more realistically. To compare regional changes in daily precipitation in the GHG-forced period 2080-2100 in the GCM and the RCM, we develop two methods. The first considers the fractional changes in probability of local daily precipitation reaching or exceeding a fixed 15 mm threshold in the anomaly climate compared with the control. The second method uses the upper one-percentile of the control at each point as the threshold. Agreement between the models is better in both seasons with the latter method, which we suggest may be more useful when considering larger scale spatial changes. On average, the probability of precipitation exceeding the 1% threshold increases by a factor of 2.5 (GCM and RCM) in winter and by I .7 (GCM) or 1.3 (RCM) in summer.
Resumo:
Under the Public Bodies Bill 2010, the HFEA, cornerstone in the regulation of assisted reproduction technologies (ART) for the last twenty years, is due to be abolished. This implies that there is no longer a need for a dedicated regulator for ART and that the existing roles of the Authority as both operational compliance monitor, and instance of ethical evaluation, may be absorbed by existing healthcare regulators. This article presents a timely analysis of these disparate functions of the HFEA, charting reforms adopted in 2008 and assessing the impact of the current proposals. Taking assisted conception treatment as the focus activity, it will be shown that the last few years have seen a concentration on the HFEA as a technical regulator based upon the principles of Better Regulation, with little analysis of how the ethical responsibility of the Authority fits into this framework. The current proposal to abolish the HFEA continues to fail to address this crucial question. Notwithstanding the fact that the scope of the Authority's ethical role may be questioned, its abolition requires that the Government consider what alternatives exists - or need to be put in place - to provide both responsive operational regulation and a forum for ethical reflection and decision-making in an area which continues to pose regulatory challenges