43 resultados para Polymers and Plastics (091209)
Resumo:
An ion-conducting polymer wherein at least 80% of the repeat units comprise an ion-conducting region and a spacer region is disclosed. The ion-conducting region has an aromatic backbone of one or more aromatic groups, wherein at least one ion-conducting functional group is attached to each aromatic group. The spacer region has an aromatic backbone of at least four aromatic groups, wherein no ion-conducting functional groups are attached to the aromatic backbone. The polymer is suitable for use as a fuel cell membrane, and can be incorporated into membrane electrode assemblies.
Resumo:
Side chain liquid crystal polymers and elastomers exhibit a rich phase behaviour which arises from the antagonistic influences of the entropically disordered polymer chain configuration and the long range orientational ordering of the mesogenic units. This competition arises since the natural macroscopic phase separation is inhibited by the inherent chemical connectivity of the system. At the heart of this connectivity is the spacer link and we consider here its influence on the phase behaviour. In particular we consider a series of elastomers in which the number of alkyl units in the spacer is systematically varied from 2 to 6. The lengthening of the coupling spacer is accompanied by an alternation of the sign of coupling between the polymer chain and the mesogenic unit. These results demonstrate the dominating influence of the so-called hinge effect in determining the phase behaviour. In addition to the alternation of the sign there is some decrease in the magnitude of the coupling with increasing spacer length.
Resumo:
The levels of alignment of the mesogenic units and of the polymer backbone trajectory for polyacrylate based nematic side-chain liquid crystal polymers and elastomers were evaluated by using wide angle X-ray and small angle neutron scattering procedures. The X-ray scattering measurements show that substantial levels of preferred orientation of the mesogenic units may be introduced through magnetic fields for uncrosslinked polymers and through mechanical extension for liquid crystal elastomers. Small angle neutron scattering measurements show that for highly aligned samples an anisotropic polymer backbone trajectory is observed in which the envelope is slightly extended by ∼ 10% in the direction parallel to the axis of alignment of the mesogenic units. The sense of this coupling differs from that recorded for other uncrosslinked side-chain liquid crystal polymers. Possible mechanisms to account for this anisotropy and its relationship to the properties of liquid crystal elastomers are discussed. The observed deformation behaviour of the liquid crystal elastomer is non-affine and this appears to confirm the dominating influence of the liquid crystal order of the side chains on the mechanical properties of these novel networks.
Resumo:
Overcoming the natural defensive barrier functions of the eye remains one of the greatest challenges of ocular drug delivery. Cornea is a chemical and mechanical barrier preventing the passage of any foreign bodies including drugs into the eye, but the factors limiting penetration of permeants and nanoparticulate drug delivery systems through the cornea are still not fully understood. In this study, we investigate these barrier properties of the cornea using thiolated and PEGylated (750 and 5000 Da) nanoparticles, sodium fluorescein, and two linear polymers (dextran and polyethylene glycol). Experiments used intact bovine cornea in addition to bovine cornea de-epithelialized or tissues pretreated with cyclodextrin. It was shown that corneal epithelium is the major barrier for permeation; pretreatment of the cornea with β-cyclodextrin provides higher permeation of low molecular weight compounds, such as sodium fluorescein, but does not enhance penetration of nanoparticles and larger molecules. Studying penetration of thiolated and PEGylated (750 and 5000 Da) nanoparticles into the de-epithelialized ocular tissue revealed that interactions between corneal surface and thiol groups of nanoparticles were more significant determinants of penetration than particle size (for the sizes used here). PEGylation with polyethylene glycol of a higher molecular weight (5000 Da) allows penetration of nanoparticles into the stroma, which proceeds gradually, after an initial 1 h lag phase.
Resumo:
A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure.
Resumo:
A detached leaf bioassay was used to determine the influence of several film forming polymers and a conventional triazole fungicide on apple scab (Venturia inaequalis (Cooke) G. Wint.) development under laboratory in vitro conditions, supported by two field trials using established apple cv. Golden Delicious to further assess the efficacy of foliar applied film forming polymers as scab protectant compounds. All film forming polymers used in this investigation (Bond, Designer, Nu-Film P, Spray Gard, Moisturin, Companion PCT12) inhibited germination of conidia, subsequent formation of appressoria and reduced leaf scab severity using a detached leaf bioassay. Regardless of treatment, there were no obvious trends in the percentage of conidia with one to four appressoria 5 days after inoculation. The synthetic fungicide penconazole resulted in the greatest levels of germination inhibition, appressorium development and least leaf scab severity. Under field conditions, scab severity on leaves and fruit of apple cv. Golden Delicious treated with a film forming polymer (Bond, Spray Gard, Moisturin) was less than on untreated controls. However, greatest protection in both field trials was provided by the synthetic fungicide penconazole. Higher chlorophyll fluorescence Fv/Fm emissions in polymer and penconazole treated trees indicated less damage to the leaf photosynthetic system as a result of fungal invasion. In addition, higher SPAD values as measures of leaf chlorophyll content were recorded in polymer and penconazole treated trees. Application of a film forming polymer or penconazole resulted in a higher apple yield per tree at harvest in both the 2005 and 2006 field trials compared to untreated controls. Results suggest application of an appropriate film forming polymer may provide a useful addition to existing methods of apple scab management. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The development of hyperbranched polymers is a rapidly expanding field in the area of macromolecular science. This short review highlights some of the notable examples in the synthesis of hyperbranched polymers and some of the key advances that have been made in the application of these hyperbranched materials in the areas of material property modifications and in high value technologies. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the development of a rapid method with ultraperformance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) for the qualitative and quantitative analyses of plant proanthocyanidins directly from crude plant extracts. The method utilizes a range of cone voltages to achieve the depolymerization step in the ion source of both smaller oligomers and larger polymers. The formed depolymerization products are further fragmented in the collision cell to enable their selective detection. This UPLC-MS/MS method is able to separately quantitate the terminal and extension units of the most common proanthocyanidin subclasses, that is, procyanidins and prodelphinidins. The resulting data enable (1) quantitation of the total proanthocyanidin content, (2) quantitation of total procyanidins and prodelphinidins including the procyanidin/prodelphinidin ratio, (3) estimation of the mean degree of polymerization for the oligomers and polymers, and (4) estimation of how the different procyanidin and prodelphinidin types are distributed along the chromatographic hump typically produced by large proanthocyanidins. All of this is achieved within the 10 min period of analysis, which makes the presented method a significant addition to the chemistry tools currently available for the qualitative and quantitative analyses of complex proanthocyanidin mixtures from plant extracts.
Resumo:
Free-radical copolymerization of 2-hydroxyethyl methacrylate with 2-hydroxyethyl acrylate can be successively utilized for the synthesis of water-soluble polymers and hydrogels with excellent physicochemical properties, thus showing promise for pharmaceutical and biomedical applications. In the work presented it has been demonstrated that water-soluble copolymers based on 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate exhibit lower critical solution temperature in aqueous solutions, whereas the corresponding high molecular weight homopolymers do not have this unique property. The temperature-induced transitions observed upon heating the aqueous solutions of these copolymers proceed via liquid−liquid phase separation. The hydrogels were also synthesized by copolymerizing 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate in the absence of a bifunctional cross-linker. The cross-linking of these copolymers during copolymerization is believed to be due to the presence of bifunctional admixtures or transesterification reactions. Transparency, swelling behavior, mechanical properties, and porosity of the hydrogels are dependent upon the monomer ratio in the copolymers. Hydrogel samples containing more 2-hydroxyethyl methacrylate are less transparent, have lower swelling capacity, higher elastic moduli, and pores of smaller size. The assessment of the biocompatibility of the copolymers using the slug mucosal irritation test revealed that they are also less irritant than poly(acrylic acid).
Resumo:
The thermal route to dichlorosilylene by pyrolysis Of Si2Cl6 has been investigated using both mass spectrometry and matrix isolation techniques. The formation Of SiCl2 in the gas phase was confirmed by employing a known "trapping" agent, namely buta-1,3-diene, which gave the product 1, 2-dichloro-1-silacyclopent-3 -ene. Dichlorosilylene was then reacted with N2O and NO. The observed products in the mass spectrum from the N2O reaction were SiCl2O and its polymers and N-2. On reacting SiCl2 with NO, SiCl2O and its polymers, Cl-2 and N2O were all observed. Infrared spectra of argon matrices supported these findings from mass spectrometry. A mechanism is proposed for this reaction based on these observations involving the intermediacy of cyclo-Cl2SiO2 and is supported by ab initio calculations at the MP2 and G3 levels. The reaction between SiCl2 and O-2 has also been investigated. The products seen in this case were SiCl2O and Cl-2. Ab initio calculations again suggest that cyclo-Cl2SiO2 is involved, and a chain mechanism seems the most likely route to Cl-2 formation. The calculations lead to DeltaH(f)degrees (SiO2,g) = -276 +/- 4- 6 kJ mol(-1).
Resumo:
Novel, linear, soluble, high-molecular-weight, film-forming polymers and copolymers in which main-chain crown ether units alternate with aliphatic (C-10-C-16) units have been obtained for the first time from aromatic electrophilic substitution reactions of crown ethers by aliphatic dicarboxylic acids followed by reduction of the carbonyl groups. The crown ether unit is dibenzo-18-crown-6, dibenzo-21-crown-7, dibenzo-24-crown-8, or dibenzo-30-crown-10; the aliphatic spacer is derived from a dicarboxylic acid (sebacic, 1,12-dodecanedicarboxylic, hexadecanedioic or 1,4-phenylenediacetic acids). The reactions were performed at 35 degrees C in a mixture of methanesulfonic acid (MSA) with phosphorus pentoxide, 12:1 (w/w), (Eaton's reagent). The carbonyl groups in the polyketones obtained were completely reduced to methylene linkages by treatment at room temperature with triethylsilane in a mixture of trifluoroacetic acid and dichloromethane. Polymers containing in the main chain crown ethers alternating with oxyindole fragments were prepared by one-pot condensation of crown ethers with isatin in a medium of Eaton's reagent. A possible reaction mechanism is suggested. According to IR and NMR analyses, the polyacylation reactions lead to the formation of isomeric (syn/anti-substituted) crown ether units in the main chain. The polymers obtained were soluble in the common organic solvents, and flexible transparent films could be cast from the solutions. DSC and X-ray studies of the polymers with "symmetrical" crown ethers reveal the presence of the endotherms corresponding to the supramolecular assemblies.
Resumo:
An exploratory model for cutting is presented which incorporates fracture toughness as well as the commonly considered effects of plasticity and friction. The periodic load fluctuations Been in cutting force dynamometer tests are predicted, and considerations of chatter and surface finish follow. A non-dimensional group is put forward to classify different regimes of material response to machining. It leads to tentative explanations for the difficulties of cutting materials such as ceramics and brittlo polymers, and also relates to the formation of discontinuous chips. Experiments on a range of solids with widely varying toughness/strength ratios generally agree with the analysis.
Resumo:
A review is given of the mechanics of cutting, ranging from the slicing of thin floppy offcuts (where there is negligible elasticity and no permanent deformation of the offcut) to the machining of ductile metals (where there is severe permanent distortion of the offcut/chip). Materials scientists employ the former conditions to determine the fracture toughness of ‘soft’ solids such as biological materials and foodstuffs. In contrast, traditional analyses of metalcutting are based on plasticity and friction only, and do not incorporate toughness. The machining theories are inadequate in a number of ways but a recent paper has shown that when ductile work of fracture is included many, if not all, of the shortcomings are removed. Support for the new analysis is given by examination of FEM simulations of metalcutting which reveal that a ‘separation criterion’ has to be employed at the tool tip. Some consideration shows that the separation criteria are versions of void-initiation-growth-and-coalescence models employed in ductile fracture mechanics. The new analysis shows that cutting forces for ductile materials depend upon the fracture toughness as well as plasticity and friction, and reveals a simple way of determining both toughness and flow stress from cutting experiments. Examples are given for a wide range of materials including metals, polymers and wood, and comparison is made with the same properties independently determined using conventional testpieces. Because cutting can be steady state, a new way is presented for simultaneously measuring toughness and flow stress at controlled speeds and strain rates.
Resumo:
The applications of rheology to the main processes encountered during breadmaking (mixing, sheeting, fermentation and baking) are reviewed. The most commonly used rheological test methods and their relationships to product functionality are reviewed. It is shown that the most commonly used method for rheological testing of doughs, shear oscillation dynamic rheology, is generally used under deformation conditions inappropriate for breadmaking and shows little relationship with end-use performance. The frequency range used in conventional shear oscillation tests is limited to the plateau region, which is insensitive to changes in the HMW glutenin polymers thought to be responsible for variations in baking quality. The appropriate deformation conditions can be accessed either by long-time creep or relaxation measurements, or by large deformation extensional measurements at low strain rates and elevated temperatures. Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological properties via modern polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that the dynamic shear plateau modulus is essentially independent of variations in MW of glutens amongst wheat varieties of varying baking performance and also that it is not the size of the soluble glutenin polymers, but the secondary structural and rheological properties of the insoluble polymer fraction that are mainly responsible for variations in baking performance. Extensional strain hardening has been shown to be a sensitive indicator of entanglements and long-chain branching in HMW polymers, and is well related to baking performance of bread doughs. The Considere failure criterion for instability in extension of polymers defines a region below which bubble walls become unstable, and predicts that when strain hardening falls below a value of around 1, bubble walls are no longer stable and coalesce rapidly, resulting in loss of gas retention and lower volume and texture. Strain hardening in doughs has been shown to reach this value at increasingly higher temperatures for better breadmaking varieties and is directly related to bubble stability and baking performance. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The phase separation behaviour in aqueous mixtures of poly(methyl vinyl ether) and hydroxypropylcellulose has been studied by cloud points method and viscometric measurements. The miscibility of these blends in solid state has been assessed by infrared spectroscopy; methanol vapours sorption experiments and scanning electron microscopy. The values of Gibbs energy of mixing of the polymers and their blends with methanol as well as between each other were calculated. It was found that in solid state the polymers can interact with methanol very well but the polymer-polymer interactions are unfavourable. Although in aqueous solutions the polymers exhibit some intermolecular interactions their solid blends are not completely miscible. (C) 2005 Elsevier Ltd. All rights reserved.