59 resultados para Plants and civilization
Resumo:
Land plants have had the reputation of being problematic for DNA barcoding for two general reasons: (i) the standard DNA regions used in algae, animals and fungi have exceedingly low levels of variability and (ii) the typically used land plant plastid phylogenetic markers (e.g. rbcL, trnL-F, etc.) appear to have too little variation. However, no one has assessed how well current phylogenetic resources might work in the context of identification (versus phylogeny reconstruction). In this paper, we make such an assessment, particularly with two of the markers commonly sequenced in land plant phylogenetic studies, plastid rbcL and internal transcribed spacers of the large subunits of nuclear ribosomal DNA (ITS), and find that both of these DNA regions perform well even though the data currently available in GenBank/EBI were not produced to be used as barcodes and BLAST searches are not an ideal tool for this purpose. These results bode well for the use of even more variable regions of plastid DNA (such as, for example, psbA-trnH) as barcodes, once they have been widely sequenced. In the short term, efforts to bring land plant barcoding up to the standards being used now in other organisms should make swift progress. There are two categories of DNA barcode users, scientists in fields other than taxonomy and taxonomists. For the former, the use of mitochondrial and plastid DNA, the two most easily assessed genomes, is at least in the short term a useful tool that permits them to get on with their studies, which depend on knowing roughly which species or species groups they are dealing with, but these same DNA regions have important drawbacks for use in taxonomic studies (i.e. studies designed to elucidate species limits). For these purposes, DNA markers from uniparentally (usually maternally) inherited genomes can only provide half of the story required to improve taxonomic standards being used in DNA barcoding. In the long term, we will need to develop more sophisticated barcoding tools, which would be multiple, low-copy nuclear markers with sufficient genetic variability and PCR-reliability; these would permit the detection of hybrids and permit researchers to identify the 'genetic gaps' that are useful in assessing species limits.
Resumo:
Herbivore dynamics and community structure are influenced both by plant quality and the actions of natural enemies. A factorial experiment manipulating both higher and lower trophic levels was designed to explore the determinants of colony growth of the aphid Aphis jacobaeae, a specialist herbivore on ragwort Senecio jacobaea. Potential plant quality was manipulated by regular addition of NPK-fertiliser and predator pressure was reduced by interception traps; the experiment was carried out at two sites. The size and persistence of aphid colonies were measured. Fertiliser addition affected plant growth in only one site, but never had a measurable effect on aphid colony growth. In both habitats the action of insect predators dominated, imposing strong and negative effects on aphid colony performance. Ants were left unmanipulated in both sites and their performance on the aphid colonies did not significantly differ between sites or between treatments. Our results suggest that, at least for aphid herbivores on S. jacobaea, the action of generalist insect predators appears to be the dominant factor affecting colony performance and can under certain conditions even improve plant productivity.
Resumo:
One definition of food security is having sufficient, safe, and nutritious food to meet dietary needs. This paper highlights the role of plant mineral nutrition in food production, delivering of essential mineral elements to the human diet, and preventing harmful mineral elements entering the food chain. To maximise crop production, the gap between actual and potential yield must be addressed. This gap is 15–95% of potential yield, depending on the crop and agricultural system. Current research in plant mineral nutrition aims to develop appropriate agronomy and improved genotypes, for both infertile and productive soils, that allow inorganic and organic fertilisers to be utilised more efficiently. Mineral malnutrition affects two-thirds of the world's population. It can be addressed by the application of fertilisers, soil amelioration, and the development of genotypes that accumulate greater concentrations of mineral elements lacking in human diets in their edible tissues. Excessive concentrations of harmful mineral elements also compromise crop production and human health. To reduce the entry of these elements into the food chain, strict quality requirements for fertilisers might be enforced, agronomic strategies employed to reduce their phytoavailability, and crop genotypes developed that do not accumulate high concentrations of these elements in edible tissues.
Resumo:
Sesquiterpenoids, and specifically sesquiterpene lactones from Asteraceae, may play a highly significant role in human health, both as part of a balanced diet and as pharmaceutical agents, due to their potential for the treatment of cardiovascular disease and cancer. This review highlights the role of sesquiterpene lactones endogenously in the plants that produce them, and explores mechanisms by which they interact in animal and human consumers of these plants. Several mechanisms are proposed for the reduction of inflammation and tumorigenesis at potentially achievable levels in humans. Plants can be classified by their specific array of produced sesquiterpene lactones, showing high levels of translational control. Studies of folk medicines implicate sesquiterpene lactones as the active ingredient in many treatments for other ailments such as diarrhea, burns, influenza, and neurodegradation. In addition to the anti-inflammatory response, sesquiterpene lactones have been found to sensitize tumor cells to conventional drug treatments. This review explores the varied ecological roles of sesquiterpenes in the plant producer, depending upon the plant and the compound. These include allelopathy with other plants, insects, and microbes, thereby causing behavioural or developmental modification to these secondary organisms to the benefit of the sesquiterpenoid producer. Some sesquiterpenoid lactones are antimicrobial, disrupting the cell wall of fungi and invasive bacteria, whereas others protect the plant from environmental stresses that would otherwise cause oxidative damage. Many of the compounds are effective due to their bitter flavor, which has obvious implications for human consumers. The implications of sesquiterpenoid lactone qualitiesfor future crop production are discussed.
Resumo:
Medicinal plant materials are not usually analysed for condensed tannins (CT). Thirty commercially available European medicinal plants and herbal products were screened for CT and fourteen CT samples were analysed in detail. This is also the first comprehensive CT analysis of pine buds, walnut leaves, heather flowers and great water dock roots. Acetone/water extracts contained between 3.2 and 25.9 g CT/100 g of extract, had CT with mean degrees of polymerisation of 2.9 to 13.3, procyanidin/prodelphinidin ratios of 1.6/98.4 to 100/0 and cis/trans flavan-3-ol ratios of 17.7/82.3 to 97.3/2.7. The majority of samples contained procyanidins, four contained A-type linkages (blackthorn flowers, heather flowers, bilberry leaves and cowberry leaves) and one sample also had galloylated procyanidins (great water dock roots).
Resumo:
Concern about biodiversity loss has led to increased public investment in conservation. Whereas there is a widespread perception that such initiatives have been unsuccessful, there are few quantitative tests of this perception. Here, we evaluate whether rates of biodiversity change have altered in recent decades in three European countries (Great Britain, Netherlands and Belgium) for plants and flower visiting insects. We compared four 20-year periods, comparing periods of rapid land-use intensification and natural habitat loss (1930–1990) with a period of increased conservation investment (post-1990). We found that extensive species richness loss and biotic homogenisation occurred before 1990, whereas these negative trends became substantially less accentuated during recent decades, being partially reversed for certain taxa (e.g. bees in Great Britain and Netherlands). These results highlight the potential to maintain or even restore current species assemblages (which despite past extinctions are still of great conservation value), at least in regions where large-scale land-use intensification and natural habitat loss has ceased.
Resumo:
Horticulture is “the first of all the arts and sciences”. This definition indicates both the breadth and depth of the discipline and its early inception as mankind changed from being hunter-gatherers to cultivators. Intensive crop production which is a form of horticulture preceded more extensive agricultural practices. From that time onwards the intricate involvement of horticulture in man’s life has become very apparent by its multitude of applications and the interests of those involved. These extend from the provision of foodstuffs and nutritional benefits through pharmaceuticals to aspects of rest and relaxation onto encouraging physical and mental well-being. Horticulture is therefore, a discipline with many components and as such that it can mean different things in the varying context of its use. This chapter introduces the meanings of horticulture as expressed by the authors who have contributed to this Trilogy of Books. They have analysed in considerable depth “Horticulture” as expressed in its facets of production, environment and society. Horticulture has impact and expression in each of these fields of human activity. This chapter also sets Horticulture into the wider context of the world of plants and their intensive cultivation both in their use by mankind and in the natural world. The aim is to demonstrate the depth and breadth of human activity associated with this discipline for it stretches from crop production, through landscape design and maintenance and into aspects of society and its expression in the arts and humanities. Horticulture touches almost every aspect of human activity. Increasingly Horticulture has significant importance in contributing towards the mitigation of the major problems which now face life on Earth such as:- climate change, food security, the loss of natural biodiversity, pollution, resource erosion and over-population. Indeed despite or perhaps because of its antiquity and therefore its strong connection between science, technology and practice horticulture can offer solutions that might allude other disciplines.
Resumo:
Zinc deficiency is the most ubiquitous micronutrient deficiency problem in world crops. Zinc is essential for both plants and animals because it is a structural constituent and regulatory co-factor in enzymes and proteins involved in many biochemical pathways. Millions of hectares of cropland are affected by Zn deficiency and approximately one-third of the human population suffers from an inadequate intake of Zn. The main soil factors affecting the availability of Zn to plants are low total Zn contents, high pH, high calcite and organic matter contents and high concentrations of Na, Ca, Mg, bicarbonate and phosphate in the soil solution or in labile forms. Maize is the most susceptible cereal crop, but wheat grown on calcareous soils and lowland rice on flooded soils are also highly prone to Zn deficiency. Zinc fertilizers are used in the prevention of Zn deficiency and in the biofortification of cereal grains.
Resumo:
Managing ecosystems to ensure the provision of multiple ecosystem services is a key challenge for applied ecology. Functional traits are receiving increasing attention as the main ecological attributes by which different organisms and biological communities influence ecosystem services through their effects on underlying ecosystem processes. Here we synthesize concepts and empirical evidence on linkages between functional traits and ecosystem services across different trophic levels. Most of the 247 studies reviewed considered plants and soil invertebrates, but quantitative trait–service associations have been documented for a range of organisms and ecosystems, illustrating the wide applicability of the trait approach. Within each trophic level, specific processes are affected by a combination of traits while particular key traits are simultaneously involved in the control of multiple processes. These multiple associations between traits and ecosystem processes can help to identify predictable trait–service clusters that depend on several trophic levels, such as clusters of traits of plants and soil organisms that underlie nutrient cycling, herbivory, and fodder and fibre production. We propose that the assessment of trait–service clusters will represent a crucial step in ecosystem service monitoring and in balancing the delivery of multiple, and sometimes conflicting, services in ecosystem management.
Resumo:
Terpene synthases are responsible for the biosynthesis of the complex chemical defense arsenal of plants and microorganisms. How do these enzymes, which all appear to share a common terpene synthase fold, specify the many different products made almost entirely from one of only three substrates? Elucidation of the structure of 1,8-cineole synthase from Salvia fruticosa (Sf-CinS1) combined with analysis of functional and phylogenetic relationships of enzymes within Salvia species identified active-site residues responsible for product specificity. Thus, Sf-CinS1 was successfully converted to a sabinene synthase with a minimum number of rationally predicted substitutions, while identification of the Asn side chain essential for water activation introduced 1,8-cineole and alpha-terpineol activity to Salvia pomifera sabinene synthase. A major contribution to product specificity in Sf-CinS1 appears to come from a local deformation within one of the helices forming the active site. This deformation is observed in all other mono- or sesquiterpene structures available, pointing to a conserved mechanism. Moreover, a single amino acid substitution enlarged the active-site cavity enough to accommodate the larger farnesyl pyrophosphate substrate and led to the efficient synthesis of sesquiterpenes, while alternate single substitutions of this critical amino acid yielded five additional terpene synthases.
Resumo:
Germin and germin-like proteins (GLPs) are encoded by a family of genes found in all plants. They are part of the cupin superfamily of biochemically diverse proteins, a superfamily that has a conserved tertiary structure, though with limited similarity in primary sequence. The subgroups of GLPs have different enzyme functions that include the two hydrogen peroxide-generating enzymes, oxalate oxidase (OxO) and superoxide dismutase. This review summarizes the sequence and structural details of GLPs and also discusses their evolutionary progression, particularly their amplification in gene number during the evolution of the land plants. In terms of function, the GLPs are known to be differentially expressed during specific periods of plant growth and development, a pattern of evolutionary subfunctionalization. They are also implicated in the response of plants to biotic (viruses, bacteria, mycorrhizae, fungi, insects, nematodes, and parasitic plants) and abiotic (salt, heat/cold, drought, nutrient, and metal) stress. Most detailed data come from studies of fungal pathogenesis in cereals. This involvement with the protection of plants from environmental stress of various types has led to numerous plant breeding studies that have found links between GLPs and QTLs for disease and stress resistance. In addition the OxO enzyme has considerable commercial significance, based principally on its use in the medical diagnosis of oxalate concentration in plasma and urine. Finally, this review provides information on the nutritional importance of these proteins in the human diet, as several members are known to be allergenic, a feature related to their thermal stability and evolutionary connection to the seed storage proteins, also members of the cupin superfamily.
Resumo:
Plant secondary metabolites glucosinolates (GSL) have important functions in plant resistance to herbivores and pathogens. We identified all major GSL that are accumulated in S-cells in Arabidopsis by MALDI-TOF MS, and estimated by LC-MS that the total GSL concentration in these cells is above 130 mM. The precise locations of the S-cells outside phloem bundles in rosette and cauline leaves and in flower stalks were visualised using sulphur mapping by cryo-SEM/EDX. S-cells contain up to 40% of total sulphur in flower stalk tissues. S-cells in emerging flower stalks and developing leaf tissues show typical signs of Programmed Cell Death (PCD) or apoptosis, such as chromatin condensation in the nucleus and blebbing of the membranes. TUNEL staining for DNA double strand breaks confirmed PCD in S-cells in postmeristematic tissues in the flower stalk as well as in the leaf. Our results show that S-cells in postmeristematic tissues proceed to an extreme degree of metabolic specialisation besides PCD. Accumulation and maintenance of a high concentration of GSL in these cells are accompanied by degradation of a number of cell organelles. The substantial changes in the cell composition during S-cell differentiation indicate the importance of this particular GSL-based phloem defence system. The specific anatomy of the S-cells and ability to accumulate specialised secondary metabolites is similar to that of the non-articulated laticifer cells in latex plants and thus indicates a common evolutionary origin.
Resumo:
The objective of this work was to determine the rumen fermentation characteristics of maize land races used as forage in central Mexico. In vitro gas production (ml per 200 mg dry matter (DM)) incubations were carried out, and cumulative gas volumes were fitted to the Krishnamoorthy et al. (1991) model. The trial used a split-plot design with cultivation practices associated with maize colour (COL) as the main plot with three levels: white, yellow and black maize; growing periods (PER) were the split plots where PER1, PER2 and PER3 represented the first, second and third periods, respectively and two contrasting zones (Z1 = valley and Z2 = mountain) were used as blocking factors. The principal effects observed were associated with the maturity of the plants and potential gas production increased (P < 0.05) in stems (PER 1 = 51.8, PER2 = 56.3, PER3 = 58.4 ml per 200 mg DM) and in whole plant (PER 1 = 60.9, PER2 = 60.8, PER3= 70.9 ml per 200 mg DM). An inverse effect was observed with fermentation rates in leaves (P < 0.01) with 0.061, 0.053 and 0.0509 (per h) and in whole plant (P < 0.05) with 0.068, 0.057, 0.050 (per h) in PER1, PER2 and PER3 respectively. The digestibility of the neutral-detergent fibre (NDF) decreased with maturity especially in leaves (P < 0.05) with values of 0.71, 0.67 and 0.66 g/kg; in rachis (P < 0.01) 0.75, 0.72, and 0.65 in PER1, PER2 and PER3 respectively. The NDF content in leaves in leaves (668, 705 and 713 g/kg DM for PER1, PER2 and PER3, respectively), stems (580, 594 and 644 g/kg DM) and, husk (663, 774 and, 808 g/kg DM) increased (P < 0.05) with increasing plant maturity, rachis were significantly different between periods (P < 0.01). The structure with-the best nutritive characteristics was the husk, because it had the lowest fibre contents, especially in acid-detergent lignin, with values of 22.6, 28.6 and 37.6 g/kg DM in PER1, PER2 and PER3, respectively.