21 resultados para Phase detection
Resumo:
Chlorosilylene, ClSiH, was prepared by 193 nm laser flash photolysis of 1-chloro-1-silacyclopent-3-ene in the gas phase. ClSiH was monitored in real time at 457.9 nm using a CW argon ion laser. The kinetics of reactions of ClSiH with C2H4, CH2 = CHCMe3, C2H2, Me2O, SO2, HCl, MeSiH3, Me2SiH2, Me3SiH, MeGeH3, MeGeH3 and precursor have been studied at ambient temperatures for the first time. Addition reactions of ClSiH and reactions with lone pair donors are faster than insertion reactions. Surprisingly ClSiH inserts faster into Si-H than Ge-H bonds. ClSiH is intermediate in reactivity between SiH2 and SiCI2. Relative reactivities of CISiH and SiH2 vary considerably. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The photochemistry of 1,1-dimethyl- and 1,1,3,4-tetramethylstannacyclopent-3-ene (4a and 4b,respectively) has been studied in the gas phase and in hexane solution by steady-state and 193-nm laser flash photolysis methods. Photolysis of the two compounds results in the formation of 1,3-butadiene (from 4a) and 2,3-dimethyl-1,3-butadiene (from 4b) as the major products, suggesting that cycloreversion to yield dimethylstannylene (SnMe2) is the main photodecomposition pathway of these molecules. Indeed, the stannylene has been trapped as the Sn-H insertion product upon photolysis of 4a in hexane containing trimethylstannane. Flash photolysis of 4a in the gas phase affords a transient absorbing in the 450-520nm range that is assigned to SnMe2 by comparison of its spectrum and reactivity to those previously reported from other precursors. Flash photolysis of 4b in hexane solution affords results consistent with the initial formation of SnMe2 (lambda(max) approximate to 500 nm), which decays over similar to 10 mu s to form tetramethyldistannene (5b; lambda(max) approximate to 470 nm). The distannene decays over the next ca. 50 mu s to form at least two other longer-lived species, which are assigned to higher SnMe2 oligomers. Time-dependent DFT calculations support the spectral assignments for SnMe2 and Sn2Me4, and calculations examining the variation in bond dissociation energy with substituent (H, Me, and Ph) in disilenes, digermenes, and distannenes rule out the possibility that dimerization of SnMe2 proceeds reversibly. Addition of methanol leads to reversible reaction with SnMe2 to form a transient absorbing at lambda(max) approximate to 360 nm, which is assigned to the Lewis acid-base complex between SnMe2 and the alcohol.
First detection of methylgermylene in the gas phase and time-resolved study of some of its reactions
Resumo:
A new transient species has been produced and detected by the gas-phase, 193 nm laser flash photolysis of 1,3,4-trimethylgermacyclopent-3-ene, TMGCP. The species has strong visible absorptions in the wavelength region 450−520 nm (maximum at 485 nm) and is attributed to the germylene, MeGeH. Time-resolved kinetic studies have led to the first rate constants for its reactions with GeH4, Me2GeH2, C2H2, C2H4, C3H6, i-C4H8, TMGCP, MeOH, HCl, and SO2. The reactivity of MeGeH is compared to those of GeH2 and GeMe2. The Me-for-H substituent effect varies according to reaction type and is not constant from GeH2 to MeGeH to GeMe2.
Resumo:
This paper proposes a new iterative algorithm for OFDM joint data detection and phase noise (PHN) cancellation based on minimum mean square prediction error. We particularly highlight the problem of "overfitting" such that the iterative approach may converge to a trivial solution. Although it is essential for this joint approach, the overfitting problem was relatively less studied in existing algorithms. In this paper, specifically, we apply a hard decision procedure at every iterative step to overcome the overfitting. Moreover, compared with existing algorithms, a more accurate Pade approximation is used to represent the phase noise, and finally a more robust and compact fast process based on Givens rotation is proposed to reduce the complexity to a practical level. Numerical simulations are also given to verify the proposed algorithm.
OFDM joint data detection and phase noise cancellation based on minimum mean square prediction error
Resumo:
This paper proposes a new iterative algorithm for orthogonal frequency division multiplexing (OFDM) joint data detection and phase noise (PHN) cancellation based on minimum mean square prediction error. We particularly highlight the relatively less studied problem of "overfitting" such that the iterative approach may converge to a trivial solution. Specifically, we apply a hard-decision procedure at every iterative step to overcome the overfitting. Moreover, compared with existing algorithms, a more accurate Pade approximation is used to represent the PHN, and finally a more robust and compact fast process based on Givens rotation is proposed to reduce the complexity to a practical level. Numerical Simulations are also given to verify the proposed algorithm. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This correspondence proposes a new algorithm for the OFDM joint data detection and phase noise (PHN) cancellation for constant modulus modulations. We highlight that it is important to address the overfitting problem since this is a major detrimental factor impairing the joint detection process. In order to attack the overfitting problem we propose an iterative approach based on minimum mean square prediction error (MMSPE) subject to the constraint that the estimated data symbols have constant power. The proposed constrained MMSPE algorithm (C-MMSPE) significantly improves the performance of existing approaches with little extra complexity being imposed. Simulation results are also given to verify the proposed algorithm.
Resumo:
Transient episodes of synchronisation of neuronal activity in particular frequency ranges are thought to underlie cognition. Empirical mode decomposition phase locking (EMDPL) analysis is a method for determining the frequency and timing of phase synchrony that is adaptive to intrinsic oscillations within data, alleviating the need for arbitrary bandpass filter cut-off selection. It is extended here to address the choice of reference electrode and removal of spurious synchrony resulting from volume conduction. Spline Laplacian transformation and independent component analysis (ICA) are performed as pre-processing steps, and preservation of phase synchrony between synthetic signals. combined using a simple forward model, is demonstrated. The method is contrasted with use of bandpass filtering following the same preprocessing steps, and filter cut-offs are shown to influence synchrony detection markedly. Furthermore, an approach to the assessment of multiple EEG trials using the method is introduced, and the assessment of statistical significance of phase locking episodes is extended to render it adaptive to local phase synchrony levels. EMDPL is validated in the analysis of real EEG data, during finger tapping. The time course of event-related (de)synchronisation (ERD/ERS) is shown to differ from that of longer range phase locking episodes, implying different roles for these different types of synchronisation. It is suggested that the increase in phase locking which occurs just prior to movement, coinciding with a reduction in power (or ERD) may result from selection of the neural assembly relevant to the particular movement. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The objective was to determine the presence or absence of transgenic and endogenous plant DNA in ruminal fluid, duodenal digesta, milk, blood, and feces, and if found, to determine fragment size. Six multiparous lactating Holstein cows fitted with ruminal and duodenal cannulas received a total mixed ration. There were two treatments (T). In T1, the concentrate contained genetically modified (GM) soybean meal (cp4epsps gene) and GM corn grain (cry1a[b] gene), whereas T2 contained the near isogenic non-GM counterparts. Polymerase chain reaction analysis was used to determine the presence or absence of DNA sequences. Primers were selected to amplify small fragments from single-copy genes (soy lectin and corn high-mobility protein and cp4epsps and cry1a[b] genes from the GM crops) and multicopy genes (bovine mitochondrial cytochrome b and rubisco). Single-copy genes were only detected in the solid phase of rumen and duodenal digesta. In contrast, fragments of the rubisco gene were detected in the majority of samples analyzed in both the liquid and solid phases of ruminal and duodenal digesta, milk, and feces, but rarely in blood. The size of the rubisco gene fragments detected decreased from 1176 bp in ruminal and duodenal digesta to 351 bp in fecal samples.
Resumo:
The objective was to determine the presence or absence of transgenic and endogenous plant DNA in ruminal fluid, duodenal digesta, milk, blood, and feces, and if found, to determine fragment size. Six multiparous lactating Holstein cows fitted with ruminal and duodenal cannulas received a total mixed ration. There were two treatments (T). In T1, the concentrate contained genetically modified (GM) soybean meal (cp4epsps gene) and GM corn grain (cry1a[b] gene), whereas T2 contained the near isogenic non-GM counterparts. Polymerase chain reaction analysis was used to determine the presence or absence of DNA sequences. Primers were selected to amplify small fragments from single-copy genes (soy lectin and corn high-mobility protein and cp4epsps and cry1a[b] genes from the GM crops) and multicopy genes (bovine mitochondrial cytochrome b and rubisco). Single-copy genes were only detected in the solid phase of rumen and duodenal digesta. In contrast, fragments of the rubisco gene were detected in the majority of samples analyzed in both the liquid and solid phases of ruminal and duodenal digesta, milk, and feces, but rarely in blood. The size of the rubisco gene fragments detected decreased from 1176 bp in ruminal and duodenal digesta to 351 bp in fecal samples.
Resumo:
Ovarian cancer is characterized by vague, non-specific symptoms, advanced stage at diagnosis and poor overall survival. A nested case control study was undertaken on stored serial serum samples from women who developed ovarian cancer and healthy controls (matched for serum processing and storage conditions as well as attributes such as age) in a pilot randomized controlled trial of ovarian cancer screening. The unique feature of this study is that the women were screened for up to 7 years. The serum samples underwent prefractionation using a reversed-phase batch extraction protocol prior to MALDI-TOF MS data acquisition. Our exploratory analysis shows that combining a single MS peak with CA125 allows statistically significant discrimination at the 5% level between cases and controls up to 12 months in advance of the original diagnosis of ovarian cancer. Such combinations work much better than a single peak or CA125 alone. This paper demonstrates that mass spectra from the low molecular weight serum proteome carry information useful for early detection of ovarian cancer. The next step is to identify the specific biomarkers that make early detection possible.
Resumo:
UV absorption spectra of five methyl-substituted hydroxy-cyclohexadienyl radicals, formed by the addition of the hydroxyl radical (OH) to toluene (methyl benzene), o-, m- and p-xylene (1,2-, 1,3- and 1,4-dimethyl benzene, respectively) and mesitylene (1,3,5-trimethylbenzene), have been determined at 298 K, 1 atm pressure (N-2 + O-2), and the corresponding absolute absorption cross-sections measured, using laser flash photolysis and time-resolved UV absorption detection. As observed for other cyclohexadienyl-type radicals, a strong absorption band is present in the 260-340 nm spectral region, with maximum cross-sections in the range (0.9-2.2) x 10(-17) cm(2) molecule(-1). The shape of the band varies significantly from one radical to the next for the series of aromatic precursors investigated. The nature and yields of hydroxylated ring-retaining oxidation products, identified in previous studies of the OH-initiated oxidation of aromatic hydrocarbons, and the results of theoretical density functional theory (DFT) calculations indicate that one or more possible isomers of the various OH-adducts may contribute to the observed spectra. Isomers where the OH-group is ortho- (or both ortho- and ipso-) to a substituent methyl-group are likely to be the most abundant but other isomers may also be formed to a significant extent. Nonetheless, the present study provides absorption spectra of the adduct radicals formed from the gas phase addition of OH to the aromatic hydrocarbons considered, near room temperature and I atm pressure. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The gas-phase ozonolysis of beta-pinene was studied in static chamber experiments, using gas chromatography coupled to mass spectrometric and flame ionisation detection to separate and detect products. A range of multifunctional organic acids-including pinic acid, norpinic acid, pinalic-3- acid, pinalic-4-acid, norpinalic acid and OH-pinalic acid-were identified in the condensed phase after derivatisation. Formation yields for these products under systematically varying reaction conditions (by adding different OH radical scavengers and Criegee intermediate scavengers) were investigated and compared with those observed from alpha-pinene ozonolysis, allowing detailed information on product formation mechanisms to be elucidated. In addition, branching ratios for the initial steps of the reaction were inferred from quantitative measurements of primary carbonyl formation. Atmospheric implications of this work are discussed.
Resumo:
Gas-phase ozonolysis of terpinolene was studied in static chamber experiments using gas chromatography coupled to mass spectrometric and flame ionisation detection to separate and detect products. Two isomers of C-7-diacids and three isomers of C-7-aldehydic acids were identified in the condensed phase after derivatisation. Possible mechanisms of formation of these acids were investigated using different OH radical scavengers and relative humidities, and were compared to those reported earlier for the ozonolysis of beta-pinene. In addition, branching ratios for some of the individual reaction steps, e. g. the branching ratio between the two hydroperoxide channels of the C-7-CI, were deduced from the quantitative product yield data. Branching ratios for POZ decomposition and the stabilisation/decomposition of the C-7-CI were also obtained from measurements of the C-7 primary carbonyl product.
Resumo:
A chemically coated piezoelectric sensor has been developed for the determination of PAHs in the liquid phase. An organic monolayer attached to the surface of a gold electrode of a quartz crystal microbalance (QCM) via a covalent thiol-gold link complete with an ionically bound recognition element has been produced. This study has employed the PAH derivative 9-anthracene carboxylic acid which, once bound to the alkane thiol, functions as the recognition element. Binding of anthracene via pi-pi interaction has been observed as a frequency shift in the QCM with a detectability of the target analyte of 2 ppb and a response range of 0-50 ppb. The relative response of the sensor altered for different PAHs despite pi-pi interaction being the sole communication between recognition element and analyte. It is envisaged that such a sensor could be employed in the identification of key marker compounds and, as such, give an indication of total PAH flux in the environment.
Resumo:
Transient neural assemblies mediated by synchrony in particular frequency ranges are thought to underlie cognition. We propose a new approach to their detection, using empirical mode decomposition (EMD), a data-driven approach removing the need for arbitrary bandpass filter cut-offs. Phase locking is sought between modes. We explore the features of EMD, including making a quantitative assessment of its ability to preserve phase content of signals, and proceed to develop a statistical framework with which to assess synchrony episodes. Furthermore, we propose a new approach to ensure signal decomposition using EMD. We adapt the Hilbert spectrum to a time-frequency representation of phase locking and are able to locate synchrony successfully in time and frequency between synthetic signals reminiscent of EEG. We compare our approach, which we call EMD phase locking analysis (EMDPL) with existing methods and show it to offer improved time-frequency localisation of synchrony.