60 resultados para Pd and Rh complexes
Resumo:
Reaction of 2-(2'-carboxyphenylazo)-4-methylphenol (H2L) with [M(PPh3)(2)Cl-2] (M = Pd, Pt) affords mixed-ligand complexes of type [M(PPh3)(L)]. Structures of both the complexes have been determined by X-ray crystallography. Both the complexes are square planar, where the 2-(2'-carboxyphenylazo)-4-methylphenol is coordinated to the metal center, via dissociation of the two acidic protons, as a dianionic tridentate O,N,O-donor, and the fourth position is occupied by the triphenylphosphine. These complexes show intense MLCT transitions in the visible region.
Resumo:
The structures of intermediates formed in propylene polymerisation using neutral salicyladiminato palladium(II) and nickel(II) complexes as catalysts have been investigated using density functional theory. Calculations show that all low energy intermediates contain agostic interactions either between the metal and a hydrogen from the added propylene forming four- or five-membered chelate rings, or, when a phenyl ring is present, between the metal and an aromatic C-C bond. The agostic interactions with the metal are concomitant with changes in ligand dimensions and electronic properties. In particular when a metal to hydrogen bond is formed, there is a lengthening of the C-H bond. Significant differences are found for the agostic interactions with palladium and nickel in that for Pd there is a clear preference for specific intermediates but for Ni there are several different structures with similar energies which are likely to lead to a greater variety of products on further polymerisation. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Reaction of the tetrakis(cyclooctene)rhodium(I) complex [{Rh(C8H14-c)2(μ-Cl)}2] with the appropriate divinyldisiloxane molecules (ViSiR2)2O (R=Me or Ph) yields, by displacement of the cycloctene ligands, the complexes [{Rh(ViSiR2)2O(μ-Cl)}2] (R=Me (1) or Ph (2)). These react further with a tertiary phosphine PR3 to give cis-[Rh{(ViSiR2)2O}(PR′3)Cl] (R′=Ph or C6H4Me-p). The complex cis-[{Rh(Vi2SiMe2)(μ-Cl)}2] (7) was similarly prepared by the displacement of ethylene from [{Rh(C2H4)2(μ-Cl)}2] by the divinyldimethylsilane Vi2SiMe2. X-ray molecular structures of the crystalline complexes 1, 2 and 7 show a distorted square planar Rh(I) environment, the CH2CH groups being orthogonal to this plane; 1 and 2 have the Rh–(ViSiR2)2O metallacycle in the chair conformation, but differ in the nature of the central Rh(Cl)RhCl core, which is planar for 1 and puckered for 2, but each of 1 and 2 is the rac-diastereoisomer, whereas 7 has the meso-configuration. In solution 1 and 2 exist as a mixture of isomers, probably the rac- and meso-pairs as established by multinuclear NMR spectral studies. A series of saturation transfer NMR spectroscopic experiments showed that the divinyldisiloxane ligands in [{Rh(ViSiPh2)2O(μ-Cl)}2] underwent a dynamic process involving the dissociation, rotation and then reassociation of the vinyl groups.
Resumo:
An uncommon coordination protocol induced by the p-tolylsulfonyl dithiocarbimate ligand (L) [L = p-CH(3)C(6)H(4)SO(2)N CS(2)(2-)] in conjunction with PPh(3) allowed the formation of novel homodimetallic, Cu(2)(PPh(3))(4)L (1), trinuclear heterometallic Cu(2)Ni(L)(2)(PPh(3))(4) (2) and heteroleptic complexes of general formula cis-[M(PPh(3))(2)L] [M = Pd(II) (3), Pt(II) (4)]. The complexes have been characterized by microanalysis, mass spectrometry, IR, (1)H, (13)C and (31)P NMR and electronic absorption spectra and single-crystal X-ray crystallography. 2 uniquely consists of square planar, trigonal planar and tetrahedral coordination spheres within the same molecule. In both heteroleptic complexes 3 and 4 the orientation of aromatic protons of PPh(3) ligand towards the Pd(II) and Pt(II) center reveals C-H center dot center dot center dot Pd and C-H center dot center dot center dot Pt rare intramolecular anagostic or preagostic interactions. These complexes exhibit photoluminescent properties in solution at room temperature arising mainly from intraligand charge transfer (ILCT) transitions. The assignment of electronic absorption bands has been corroborated by time dependent density functional theory (TD-DFT) calculations. Complexes 1 and 2 with sigma(rt) values similar to 10(-6) S cm(-1) show semi-conductor properties in the temperature range 313-403 K whereas 3 and 4 exhibit insulating behaviour.
Resumo:
Chiral N-heterocyclic carbene–borane complexes have been synthesised, and have been shown to reduce ketones with Lewis acid promotion. Chiral N-heterocyclic carbene–borane and –diorganoborane complexes can reduce ketones with enantioselectivities up to 75% and 85% ee, respectively.
Resumo:
The hexaazamacrocycle 7,22-dimethyl-3,7,11,18,22,26-hexaazatricyclo[26.2.2.2(13,16)] tetratriaconta-1(30), 13,15,28,31,33- hexaene (Me-2[30] pbz(2)N(6)) was synthesized and characterised by single crystal X-ray diffraction. The macrocycle adopts a conformation with the two aromatic rings almost parallel at a distance of ca. 4.24 Angstrom, but displaced relative to each other by ca. 1.51 Angstrom. The protonation constants of this compound and the stability constants of its complexes with Cu2+ and Zn2+, were determined in water - methanol (9 : 1 v/v) at 25 degreesC with ionic strength 0.10 mol dm(-3) in KCl. The potentiometric and spectroscopic studies (NMR of zinc, cadmium and lead complexes, and EPR of the copper complexes) indicate the formation of only dinuclear complexes. The association constants of the dinuclear copper complex with anions ( thiocyanate, terephthalate and glyphosate) and neutral molecules (1,4-benzenedimethanol, p-xylylenediamine and terephthalic acid) were determined at 20 degreesC in methanol. The structural preferences of this ligand and of its dinuclear copper(II) complex with a variety of bridging ligands were evaluated theoretically by molecular mechanics calculations (MM) and molecular dynamics (MD) using quenching techniques.
Resumo:
In situ synthesis and testing of Ru and Pd nanoparticles as catalysts in the presence of ammonium perfluorohydrocarbo-carboxylate surfactant in supercritical carbon dioxide were carried out in a stainless steel batch reactor at 40 degrees C over a pressure range of 80-150 bar CO2/H-2. Direct Visualization of the formation of a supercritical phase at above 80 bar, followed by the formation of homogeneous microemulsions containing dispersed Ru nanoparticles and Pd nanoparticles in scCO(2) at above 95-100 bar, were conducted through a sapphire window reactor using a W-0 (molar water to surfactant ratio) of 30. The synthesised RU and Pd nanoparticles showed interesting product distributions in the selective hydrogenation of organic molecules, depending critically oil the density and polarity of the fluid (which ill turn depends on the pressure applied). Thus, selective hydrogenation of the citral molecule, which contains three reducible groups (aldehydes and double bonds at the 23 and 6,7 positions), is feasible Lis a chemical probe. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Reaction of Cu(1,2-phenylenediamine)(2)(ClO4)(2) with neat RR'=O (R = methyl and/or ethyl) (lives Cu(2,2-dialkyl-2H-benzimidazole)ClO4. demetallation of which by the action of aqueous ammonia yields Pure 2,2-dialkyl-2H-benzimidazoles. These are characterised by NMR. hi the X-ray crystal Structure, Ag(2,2-methyl-2H-benzimi-dazolc)NO3 is Found to be a spiral 1D coordination polymer where the 2H-benzimidazole acts as an N,N bridge between two Ag(I) centus. Although 2H-benzimidazoles are very unstable in the free state, they are quite stable in their Cu(I)(1) and Ag(I) complexes. The 1,2-tautomerisation in imidazole and benzimidazole have been Studied by means of transition state calculations at B3LYP/6-3 11 +G(2d,p)* level.
Resumo:
In the search for a versatile building block that allows the preparation of heteroditopic tpy-pincer bridging ligands, the synthon 14'-[C6H3(CH2Br)(2)-3,5]-2,2':6',2 ''-terpyridine was synthesized. Facile introduction of diphenylphosphanyl groups in this synthon gave the ligand 14'-[C6H3(CH2PPh2)2-3,5]-2,2':6',2"-terpyridine) ([tpyPC(H)Pj). The asymmetric mononuclear complex [Fe(tpy){tpyPC(H)P}](PF6)(2), prepared by selective coordination of [Fe(tpy)Cl-3] to the tpy moiety of [tpyPC(H)P], was used for the synthesis of the heterodimetallic complex [Fe(tpy)(tpyPCP)Ru(tpy)](PFC,)3, which applies the "complex as ligand" approach. Coordination of the ruthenium centre at the PC(H)P-pincer moiety of [Fe(tpy){tpyPC(H)P}](PF6)(2) has been achieved by applying a transcyclometallation procedure. The ground-state electronic properties of both complexes, investigated by cyclic and square-wave voltammetries and UV/Vis spectroscopy, are discussed and compared with those of [Fe(tPY)(2)](PF6)(2) and [Ru(PCP)(tpy)]Cl, which represent the mononuclear components of the heterodinuclear species. An in situ UV/Vis spectroelectrochemical study was performed in order to localize the oxidation and reduction steps and to gain information about the Fe-II-Ru-II communication in the heterodimetallic system [Fe(tpy)(tpyPCP)Ru(tpy)](PF6)(3) mediated by the bridging ligand [tpyPCP]. Both the voltammetric and spectroelectrochemical results point to only very limited electronic interaction between the metal centres in the ground state.
Electrochemical studies of bi- and polymetallic complexes featuring acetylide based bridging ligands
Resumo:
Acetylide-based bridging ligands have been widely used in the preparation of complexes that display a degree of electronic interaction between metal-based redox groups located at the ligand termini. The electrochemical response of these systems has been selectively reviewed, with a focus on the variation in properties that accompany changes in the structure of the bridging ligand and the nature of the metal groups.
Resumo:
The synthesis and characterisation of the complexes [η2-{2-H-1-(Me3SiC ≡ C)-C60}Co2(CO)6] (2)} and [η-2-{2-H-1-(Me3SiC ≡ C)-C60}Ni2η-C5H5)2] (3)} is reported, together with a single-crystal molecular structure for (3). This provides the first structural data for an acyclic metal derivative of [60]-fullerene.
Resumo:
Reaction of with one or two equivalents of LiPPh2 afforded the new phosphanidometal(III) complexes . Reaction of 2 with LiC≡CSiMe3 led to the diamagnetic zirconium(III) alkynyl derivative [{Zr(C5H5)(μ−C≡CSiMe3)}2(μ−η5−C5H4−η5−C5H4], 7. Alkylation of 6 with LiCH2CMe2Ph gave [{Zr(η5−C5H5)(CH2CMe2Ph)2}2{μ−(η5−C5H4)}], 8. A detailed NMR study of complexes 3 and 4 allowed the observation of the spectral behaviour of the eight different fulvalene protons through their coupling to the 31P nucleus. The fluxional behaviour of complex 7 was studied by dynamic DNMR, and kinetic parameters for the σ-π-conversion of the alkynyl ligand were determined. The molecular structures of complexes 3 and 7 were determined by X-ray diffraction methods.
Resumo:
Phenylphosphinic acid (HPhPO2H) and phenylphosphonic acid (PhPO3H2) react with a methanolic solution of [Ru2(μ-O2CCH3)4(O2CCH3)2]H·0.7H2O at room temperature to give [Ru2(μ-O2CCH3)4(HPhPO2)2H (1) and [Ru2(μ-O2CCH3)4 (PhPO3H)2]H·H2O (2), respectively. The X-ray crystal structures of 1 and 2 each show the RuRu core to be ligated by four bridging bidentate acetate ligands [RuRu distances: 1 = 2.272(1) Å; 2 = 2.267(2) Å] and two axial phenylphosphinate and phenylphosphonate ligands, respectively. In each complex the individual bimetallic molecules are linked together by a hydrogen ion which bridges the oxygen atoms of neighbouring axial ligands. In 2 the water molecule is also hydrogen-bonded to one of the axial phenylphosphonate groups. Spectroscopic, magnetic and cyclic voltammetric data for the complexes are given.
Resumo:
The reaction of the fulvalene titanium(III) hydride [{Ti(η5-C5H5)(μ-H)}2(μ-η5-η5-C10H8)] (1) with chlorine leads to [{Ti(η5-C5H5)(μ-Cl)}2(μ-η5-η5-C10H8)] (3) and [{Ti(η5-C5H5)Cl2}2(μ-η5-η5-C10H8)] (4). The reaction of 3 with azobenzene, in wet toluene, gives [{Ti(η5-C5H5)Cl}2(μ-O)(μ-η5-η5-C10H8)] (5) and 1,2-diphenyl hydrazine. The alkylation of 4 and the analogous zirconium complex [{Zr(η5-C5H55)Cl2}2(μ-η5-η5-C10H8)] (2) with LiCH2SiMe3 or LiCH3 permits isolation of the tetraalkyl derivatives [{M(η5-C5H5)(CH2SiMe3)2}2(μ-η5-η5-C10H8)] (M Ti (6); Zr (8)) and [{Ti(η5-C5H5)(CH3)2}2(μ-η5-η5C10H8)] (7). All the new fulvalene compounds were characterized by IR, and 1H and 13C NMR spectroscope, and mass spectra and 5 by X-ray diffraction. The structure of 5 is very similar to that of the comparable TiIV compound [{Ti(η5-C5H5)2Cl}2(μ-O)] except for the smaller TiOTi angle (159.4° against 173.81°) and a significant deviation from linearity.
Resumo:
Alkenyl (CHCH2 or CFCF2) or alkynyl (CCPh) derivatives of trimethyltin are shown to be superior to lithium or magnesium reagents for the synthesis of corresponding mono-organoplatinum(II) species by metathesis (L = SnMe3R +cis-[PtCl2L2]→trans-[PtRClL2]+ SnMe3Cl tertiary phosphine). The reactivity order for SnMe3R is R = CCPh > CFCF2 > CHCH2. This order is also found for oxidative addition of SnMe3R to Pt0 to give cis-[PtRL2(SnMe3)]. When the latter complex (R = CHCH2) reacts with X2 or MeX further oxidative addition occurs exclusively at the platinum centre. Aromatic isonitriles (R′NC)co-ordinate to the platinum and give insertion products trans-[Pt{C(CHCH2)= NR′}ClL2] on heating or carbene complexes with NBunH2. The alkynyl trans-[Pt(CCPh)ClL2] also forms 1 :1 adducts with R′NC and carbene complexes therefrom, but no insertion products. Spectroscopic data for the new complexes are presented.