145 resultados para POSTPRANDIAL MOTILITY
Resumo:
The motility and efficacy of Pseudomonas oryzihabitans as a biocontrol agent against the potato cyst nematode Globodera rostochiensis were studied with respect to temperature. The influence of soil moisture on bacterial movement was also tested. In a closed container trial, P. oryzihabitans significantly reduced invasion of second stage juveniles (J2) of G. rostochiensis in potato roots, its effect being more marked at 25 and 21 degreesC than at 17 degreesC. P. oryzihabitans motility in vitro was optimal at 26 degreesC and inhibited at temperatures below 18 degreesC. In soil, both temperature and matric potential affected bacterial movement. At 16 degreesC its movement and survival were suppressed, but they were unaffected at 25 degreesC. At both temperatures the biocontrol agent moved faster in the wetter (- 0.03 MPa) than in the drier soil (- 0.1 MPa). These results suggest that temperature is a key factor in determining the potential of P. or.yzihabitans as a biocontrol agent. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The motility and efficacy of Pseudomonas oryzihabitans as a biocontrol agent against the potato cyst nematode Globodera rostochiensis were studied with respect to temperature. The influence of soil moisture on bacterial movement was also tested. In a closed container trial, P. oryzihabitans significantly reduced invasion of second stage juveniles (J2) of G. rostochiensis in potato roots, its effect being more marked at 25 and 21 degreesC than at 17 degreesC. P. oryzihabitans motility in vitro was optimal at 26 degreesC and inhibited at temperatures below 18 degreesC. In soil, both temperature and matric potential affected bacterial movement. At 16 degreesC its movement and survival were suppressed, but they were unaffected at 25 degreesC. At both temperatures the biocontrol agent moved faster in the wetter (- 0.03 MPa) than in the drier soil (- 0.1 MPa). These results suggest that temperature is a key factor in determining the potential of P. or.yzihabitans as a biocontrol agent. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
BACKGROUND: Trophoblast invasion is a temporally and spatially regulated scheme of events that can dictate pregnancy outcome. Evidence suggests that the potent mitogen epidermal growth factor (EGF) regulates cytotrophoblast (CTB) differentiation and invasion during early pregnancy. METHODS AND RESULTS: In the present study, the first trimester extravillous CTB cell line SGHPL-4 was used to investigate the signalling pathways involved in the motile component of EGF-mediated CTB migration/invasion. EGF induced the phosphorylation of the phosphatidylinositol 3-kinase (PI3-K)-dependent proteins, Akt and GSK-3β as well as both p42/44 MAPK and p38 mitogen-activated protein kinases (MAPK). EGF-stimulated motility was significantly reduced following the inhibition of PI3-K (P < 0.001), Akt (P < 0.01) and both p42/44 MAPK (P < 0.001) and p38 MAPKs (P < 0.001) but not the inhibition of GSK-3β. Further analysis indicated that the p38 MAPK inhibitor SB 203580 inhibited EGF-stimulated phosphorylation of Akt on serine 473, which may be responsible for the effect SB 203580 has on CTB motility. Although Akt activation leads to GSK-3β phosphorylation and the subsequent expression of β-catenin, activation of this pathway by 1-azakenpaullone was insufficient to stimulate the motile phenotype. CONCLUSION: We demonstrate a role for PI3-K, p42/44 MAPK and p38 MAPK in the stimulation of CTB cell motility by EGF, however activation of β-catenin alone was insufficient to stimulate cell motility.
Resumo:
Purpose: To assess the effect of hyaluronidase on eye and eyelid movements when used as an adjunct in sub-Tenon's anaesthesia. Methods: A total of 60 patients who had sub-Tenon's anaesthesia prior to phacoemulsification surgery were divided into two equal groups in a double-masked randomised controlled fashion. Of these, Group A had 4 ml lignocaine 2%, while Group B had 4ml lignocaine 2% with the addition of sodium hyaluronidase 75 IU/ml. Ocular motility, levator, and orbicularis oculi function were measured in all patients at 5 and 8 min. Levator function was scored from 0 (no function) to 3 (complete function) while orbicularis function was scored from 0 to 2. The score for ocular motility was the sum in four positions of gaze, each position scoring from 0 to 2. Results were compared using a nonparametric test. Results Group B achieved significantly better ocular and lid akinesia than Group A both at 5 and 8 min with P < 0.01. The median scores for levator function at 5 and 8 min were 2 for Group A and 0 for Group B. For orbicularis function, the median scores at both time intervals were 2 for Group A and 1 for Group B. For ocular motility, the median score for Group A at 5 min was 3 and at 8 min was 2.5; for Group B at 5 min was 0.5 and at 8 min was 0. Conclusions: The addition of hyaluronidase in sub-Tenon's anaesthesia has a significant effect in improving ocular and lid (levator and orbicularis) akinesia.
Resumo:
Although apolipoprotein AN (apoA-V) polymorphisms have been consistently associated with fasting triglyceride (TG) levels, their impact on postprandial lipemia remains relatively unknown. In this study, we investigate the impact of two common apoA-V polymorphisms (-1131 T>C and S19W) and apoA-V haplotypes on fasting and postprandial lipid metabolism in adults in the United Kingdom (n = 259). Compared with the wild-type TT, apoA-V -1131 TC heterozygotes had 15% (P = 0.057) and 21% (P = 0.002) higher fasting TG and postprandial TG area under the curve (AUC), respectively. Significant (P = 0.038) and nearly significant (P = 0.057) gender X genotype interactions were observed for fasting TG and TG AUC, with a greater impact of genotype in males. Lower HDL-cholesterol was associated with the rare TC genotype (P = 0.047). Significant linkage disequilibrium was found between the apoA-V -1131 T>C and the apoC-III 3238 C>G variants, with univariate analysis indicating an impact of this apoC-III single nucleotide polymorphism (SNP) on TG AUC (P = 0.015). However, in linear regression analysis, a significant independent association with TG AUC (P = 0.007) was only evident for the apoA-V -1131 T>C SNP, indicating a greater relative importance of the apoA-V genotype.
Resumo:
Most of diurnal time is spent in a postprandial state due to successive meal intakes during the day. As long as the meals contain enough fat, a transient increase in triacylglycerolaemia and a change in lipoprotein pattern occurs. The extent and kinetics of such postprandial changes are highly variable and are modulated by numerous factors. This review focuses on factors affecting postprandial lipoprotein metabolism and genes, their variability and their relationship with intermediate phenotypes and risk of CHD. Postprandial lipoprotein metabolism is modulated by background dietary pattern as well as meal composition (fat amount and type, carbohydrate, protein, fibre, alcohol) and several lifestyle conditions (physical activity, tobacco use), physiological factors (age, gender, menopausal status) and pathological conditions (obesity, insulin resistance, diabetes mellitus). The roles of many genes have been explored in order to establish the possible implications of their variability in lipid metabolism and CHD risk. The postprandial lipid response has been shown to be modified by polymorphisms within the genes for apo A-I, A-IV, AN, E, B, C-I and C-III, lipoprotein lipase, hepatic lipase, fatty acid binding and transport proteins, microsomal trigyceride transfer protein and scavenger receptor class B type I. Overall, the variability in postprandial response is important and complex, and the interactions between nutrients or dietary or meal compositions and gene variants need further investigation. The extent of present knowledge and needs for future studies are discussed in light of ongoing developments in nutrigenetics.
Resumo:
Background: Postprandial lipid metabolism in humans has deserved much attention during the last two decades. Although fasting lipid and lipoprotein parameters reflect body homeostasis to some extent, the transient lipid and lipoprotein accumulation that occurs in the circulation after a fat-containing meal highlights the individual capacity to handle an acute fat input. An exacerbated postprandial accumulation of triglyceride-rich lipoproteins in the circulation has been associated with an increased cardiovascular risk. Methods: The important number of studies published in this field raises the question of the methodology used for such postprandial studies, as reviewed. Results: Based on our experiences, the present review reports and discuss the numerous methodological issues involved to serve as a basis for further works. These aspects include aims of the postprandial tests, size and nutrient composition of the test meals and background diets, pre-test conditions, characteristics of subjects involved, timing of sampling, suitable markers of postprandial lipid metabolism and calculations. Conclusion: In conclusion, we stress the need for standardization of postprandial tests.
Resumo:
Our aim was to determine whether meal fatty acids influence insulin and glucose responses to mixed meals and whether these effects can be explained by variations in postprandial NEFA and Apo, which regulate the metabolism of triacylglycerol-rich lipoproteins (Apo C and E). A single-blind crossover study examined the effects of single meals enriched in saturated fatty acids SFA), n-6 PUFA and MUFA on plasma metabolite and insulin responses. The triacylglycerol response following the PUFA meal showed a lower net incremental area under the curve than following the SFA and MUFA meals (P < 0.007). Compared with the SFA meal, the PUFA meal showed a lower net incremental area under the curve for the NEFA response from initial suppression to the end of the postprandial period (180-480 min; P < 0.02), and both PUFA and MUFA showed a lower net incremental glucose response (P < 0.02), although insulin concentrations were similar between meals. The pattern of the Apo E response was also different following the SFA meal (P < 0.02). There was a significant association between the net incremental NEFA (180-480 min) and glucose response (r(s)=0.409, P=0.025), and in multiple regression analysis the NEFA response accounted for 24 % of the variation in glucose response. Meal SFA have adverse effects on the postprandial glucose response that may be due to greater elevations in NEFA arising from differences in the metabolism of SFA- v. PUFA- and MUFA-rich lipoproteins. Elevated Apo E responses to high-SFA meals may have important implications for the hepatic metabolism of triacylglycerol-rich lipoproteins.
Resumo:
An exaggerated postprandial lipaemic response is thought to play a central role in the development of an atherogenic lipoprotein phenotype, a recognized lipid risk factor for coronary heart disease. A small number of limited studies have compared postprandial lipaemia in subjects of varying age, but have not investigated mechanisms underlying age-associated changes in postprandial lipaemia. In order to test the hypothesis that impaired lipaemia in older subjects is associated with loss of insulin sensitivity, the present study compared the postprandial lipaemic and hormone responses for 9 h following a standard mixed meal in normolipidaemic healthy young and middle-aged men. Lipoprotein lipase (LPL) and hepatic lipase (HL) activities were determined in post-heparin plasma 9 h postprandially and on another occasion under fasting conditions. Postprandial plasma glucose (P < 0.02), retinyl ester (indirect marker for chylomicron particles; P < 0.005) and triacylglycerol (TAG)-rich lipoprotein (density < 1.006 g/ml fraction of plasma) TAG (P < 0.05) and retinyl ester (P < 0.005) responses were higher in middle-aged men, whereas plasma insulin responses were lower in this group (P < 0.001). Fasting and 9 h postprandial LPL and HL activities were also significantly lower in the middle-aged men compared with the young men (P < 0.006). In conclusion, the higher incremental postprandial TAG response in middle-aged men than young men was attributed to the accumulation of dietary-derived TAG-rich lipoproteins (density < 1.006 g/ml fraction of plasma) and occurred in the absence of marked differences in fasting TAG levels between the two groups. Fasting and postprandial LPL and HL activities were markedly lower in middle-aged men, but lack of statistical associations between measures of insulin response and post-heparin lipase activities, as well as between insulin and measures of postprandial lipaemia, suggest that this lower activity cannot be attributed to lack of sensitivity of lipases to activation by insulin. Alternatively, post-heparin lipase activities may not be good markers for the insulin-sensitive component of lipase that is activated postprandially.
Resumo:
Dysregulation of lipid and glucose metabolism in the postprandial state are recognised as important risk factors for the development of cardiovascular disease and type 2 diabetes. Our objective was to create a comprehensive, standardised database of postprandial studies to provide insights into the physiological factors that influence postprandial lipid and glucose responses. Data were collated from subjects (n = 467) taking part in single and sequential meal postprandial studies conducted by researchers at the University of Reading, to form the DISRUPT (DIetary Studies: Reading Unilever Postprandial Trials) database. Subject attributes including age, gender, genotype, menopausal status, body mass index, blood pressure and a fasting biochemical profile, together with postprandial measurements of triacylglycerol (TAG), non-esterified fatty acids, glucose, insulin and TAG-rich lipoprotein composition are recorded. A particular strength of the studies is the frequency of blood sampling, with on average 10-13 blood samples taken during each postprandial assessment, and the fact that identical test meal protocols were used in a number of studies, allowing pooling of data to increase statistical power. The DISRUPT database is the most comprehensive postprandial metabolism database that exists worldwide and preliminary analysis of the pooled sequential meal postprandial dataset has revealed both confirmatory and novel observations with respect to the impact of gender and age on the postprandial TAG response. Further analysis of the dataset using conventional statistical techniques along with integrated mathematical models and clustering analysis will provide a unique opportunity to greatly expand current knowledge of the aetiology of inter-individual variability in postprandial lipid and glucose responses.
Resumo:
With increasing recognition of the pivotal role of vascular dysfunction in the progression of atherosclerosis, the vasculature has emerged as an important target for dietary therapies. Recent studies have indicated that chronic fatty acid manipulation alters vascular reactivity, when measured after an overnight fast. However, individuals spend a large proportion of the day in the postprandial (non-fasted) state. Several studies have shown that high fat meals can impair endothelial function within 3-4 h, a time period often associated with peak postprandial lipaemia. Although the impact of meal fatty acids on the magnitude and duration of the postprandial lipaemic response has been extensively studied, very little is known about their impact on vascular reactivity after a meal.
Resumo:
Although chronic fish oil intervention had been shown to have a positive impact on vascular reactivity, very little is known about their acute effects during the postprandial phase. Our aim was to examine the impact of a fish oil-enriched test meal on postprandial vascular reactivity in healthy younger ( < 50 years) v. older ( ≥ 50 years) men. Vascular reactivity was measured at baseline (0 h), 2 and 4 h after the meal by laser Doppler iontophoresis and blood samples taken at 0 and 4 h for the measurement of plasma lipids, total nitrite, glucose and insulin. Acetylcholine- (ACh, endothelial-dependent vasodilator) and sodium nitroprusside (SNP, endothelial-independent vasodilator)-induced reactivities were greater at 4 h than at baseline or 2 h in the younger men (P < 0·04). These changes were not observed in the older men. Comparison of the male groups revealed significantly greater responses to ACh (P = 0·006) and SNP (P = 0·05) at 4 h in the younger compared with the older males. Postprandial NEFA concentrations were also greater at 4 h in the younger compared with the older men (P = 0·005), with no differences observed for any of the other analytes. Multiple regression analysis revealed age to be the most significant predictor of both ACh and SNP induced reactivity 4 h after the meal. In conclusion, the ingestion of a meal enriched in fish oil fatty acids was shown to improve postprandial vascular reactivity at 4 h in our younger men, with little benefit evident in our older men.
Resumo:
Background: Dietary a-linolenic acid (ALA) can be converted to long-chain n-3 polyunsaturated fatty acids (PUFAs) in humans and may reproduce some of the beneficial effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on cardiovascular disease risk factors. Objective: This study aimed to compare the effects of increased dietary intakes of ALA and EPA+DHA on a range of atherogenic risk factors. Design: This was a placebo-controlled, parallel study involving 150 moderately hyperlipidemic subjects randomly assigned to 1 of 5 interventions: 0.8 or 1.7 g EPA+DHA/d, 4.5 or 9.5 g ALA/d, or an n-6 PUFA control for 6 mo. Fatty acids were incorporated into 25 g of fat spread and 3 capsules to be consumed daily. Results: The change in fasting or postprandial lipid, glucose, or insulin concentrations or in blood pressure was not significantly different after any of the n-3 PUFA interventions compared with the n-6 PUFA control. The mean (+/-SEM) change in fasting triacylglycerols after the 1.7-g/d EPA+DHA intervention (-7.7 +/- 4.99%) was significantly (P < 0.05) different from the change after the 9.5-g/d ALA intervention (10.9 +/- 4.5%). The ex vivo susceptibility of LDL to oxidation was higher after the 1.7-g/d EPA+DHA intervention than after the control and ALA interventions (P < 0.05). There was no significant change in plasma a-tocopherol concentrations or in whole plasma antioxidant status in any of the groups. Conclusion: At estimated biologically equivalent intakes, dietary ALA and EPA+DHA have different physiologic effects.
Resumo:
Chronic fish oil intervention had been shown to have a positive impact on endothelial function. Although high-fat meals have often been associated with a loss of postprandial vascular reactivity, studies examining the effects of fish oil fatty acids on vascular function in the postprandial phase are limited. The aim of the present study was to examine the impact of the addition of fish oil fatty acids to a standard test meal on postprandial vascular reactivity. A total of 25 men received in a random order either a placebo oil meal (40 g of mixed fat; fatty acid profile representative of the U.K. diet) or a fish oil meal (31 g of mixed fat and 9 g of fish oil) on two occasions. Vascular reactivity was measured at baseline (0 h) and 4 h after the meal by laser Doppler iontophoresis, and blood samples were taken for the measurement of plasma lipids, total nitrite, glucose and insulin. eNOS (endothelial NO synthase) and NADPH oxidase gene expression were determined in endothelial cells after incubation with TRLs (triacylglycerol-rich lipoproteins) isolated from the plasma samples taken at 4 h. Compared with baseline, sodium nitroprusside (an endothelium-independent vasodilator)-induced reactivity (P = 0.024) and plasma nitrite levels (P = 0.001) were increased after the fish oil meal. In endothelial cells, postprandial TRLs isolated after the fish oil meal increased eNOS and decreased NADPH oxidase gene expression compared with TRLs isolated following the placebo oil meal (P <= 0.03). In conclusion, meal fatty acids appear to be an important determinant of vascular reactivity, with fish oils significantly improving postprandial endothelium-independent vasodilation.
Resumo:
Objective The influences of genetic determinants on the magnitude of postprandial lipaemia are presently unclear. Here the impact of the common apolipoprotein (apo)E epsilon mutation on the postprandial triglyceride (TG) response is determined, along with an assessment of genotype penetrance according to age, body mass index and gender. Methods and results Healthy adults (n = 251) underwent a postprandial investigation, in which blood samples were taken at regular intervals after a test breakfast (0 min, 49 g fat) and lunch (330 min, 29 g fat) until 480 min after the test breakfast. There was a significant impact of apoE genotype on fasting total cholesterol (TC), (P = 0.027), LDL-cholesterol (LDL-C), (P = 0.008), and %LDL3 (P = 0.001), with higher and lower levels in the E4 and E2 carriers respectively relative to the E3/E3 genotype. Reflective of a higher fasting TG (P = 0.001), a significantly higher area under the curve for the postprandial TG response (TG AUC) was evident in the E4 carriers relative to the E3/E3 group (P = 0.038). In the group as a whole, a significant age × genotype interaction was observed for fasting TC (P = 0.021). In the participants >50 years there was a significant impact of genotype on TC (P = 0.005), LDL-C (P = 0.001) and TAG AUC (P = 0.028). Conclusions It is possible that an exaggerated postprandial lipaemia contributes to the increased coronary heart disease risk associated with carriers of the E4 allele; an effect which is more evident in older adults.