35 resultados para POLE PLACEMENT
Resumo:
This paper considers PID control in terms of its implementation by means of an ARMA plant model. Two controller actions are considered, namely pole placement and deadbeat, both being applied via a PID structure for the adaptive real-time control of an industrial level system. As well as looking at two controller types separately, a comparison is made between the forms and it is shown how, under certain circumstances, the two forms can be seen to be identical. It is shown how the pole-placement PID form does not in fact realise an action which is equivalent to the deadbeat controller, when all closed-loop poles are chosen to be at the origin of the z-plane.
Resumo:
The real time hardware architecture of a deterministic video echo canceller (deghoster) system is presented. The deghoster is capable of calculating all the multipath channel distortion characteristics from terrestrial and cable television in one single pass while performing real time video in-line ghost cancellation. The results from the actual system are also presented in this paper.
Resumo:
The robustness of state feedback solutions to the problem of partial pole placement obtained by a new projection procedure is examined. The projection procedure gives a reduced-order pole assignment problem. It is shown that the sensitivities of the assigned poles in the complete closed-loop system are bounded in terms of the sensitivities of the assigned reduced-order poles, and the sensitivities of the unaltered poles are bounded in terms of the sensitivities of the corresponding open-loop poles. If the assigned poles are well-separated from the unaltered poles, these bounds are expected to be tight. The projection procedure is described in [3], and techniques for finding robust (or insensitive) solutions to the reduced-order problem are given in [1], [2].
Resumo:
This paper presents a novel intelligent multiple-controller framework incorporating a fuzzy-logic-based switching and tuning supervisor along with a generalised learning model (GLM) for an autonomous cruise control application. The proposed methodology combines the benefits of a conventional proportional-integral-derivative (PID) controller, and a PID structure-based (simultaneous) zero and pole placement controller. The switching decision between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using a fuzzy-logic-based supervisor, operating at the highest level of the system. The supervisor is also employed to adaptively tune the parameters of the multiple controllers in order to achieve the desired closed-loop system performance. The intelligent multiple-controller framework is applied to the autonomous cruise control problem in order to maintain a desired vehicle speed by controlling the throttle plate angle in an electronic throttle control (ETC) system. Sample simulation results using a validated nonlinear vehicle model are used to demonstrate the effectiveness of the multiple-controller with respect to adaptively tracking the desired vehicle speed changes and achieving the desired speed of response, whilst penalising excessive control action. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
This paper employs a state space system description to provide a pole placement scheme via state feedback. It is shown that when a recursive least squares estimation scheme is used, the feedback employed can be expressed simply in terms of the estimated system parameters. To complement the state feedback approach, a method employing both state feedback and linear output feedback is discussed. Both methods arc then compared with the previous output polynomial type feedback schemes.
Resumo:
A simple parameter adaptive controller design methodology is introduced in which steady-state servo tracking properties provide the major control objective. This is achieved without cancellation of process zeros and hence the underlying design can be applied to non-minimum phase systems. As with other self-tuning algorithms, the design (user specified) polynomials of the proposed algorithm define the performance capabilities of the resulting controller. However, with the appropriate definition of these polynomials, the synthesis technique can be shown to admit different adaptive control strategies, e.g. self-tuning PID and self-tuning pole-placement controllers. The algorithm can therefore be thought of as an embodiment of other self-tuning design techniques. The performances of some of the resulting controllers are illustrated using simulation examples and the on-line application to an experimental apparatus.
Resumo:
The basic assumption from implicit self-tuning theory is that, for self tuning to occur, the control input obtained from the estimated system model converges to the value whic would be obtained if the system parameters were known. As as direct result of this, only certain control strategies are acceptable. Here a general rule for the self-tuning property of pole-placement self tuners is obtained, and previous strategies are shown to be special cases of this.
Resumo:
A three degrees of freedom industrial robot is controlled by applying PID self-tuning (PID/ST) controllers. This control is considered as a corrective term to a nominal value, centrally computed from an inaccurate and/ or simplified dynamic model. An identification scheme on an assumed linear plant describing the deviation from the desired trajectory is employed in order to tune the controller coefficients and thus accomplish a behaviour prescribed through a desired pole placement. A salient feature of our approach is the decentralized nature of the controllers producing the corrective term for each joint. This opens the way to practical implementation, as recent computing requirement calculations for similar set-ups have shown in the literature. Numerical results are presented.
Resumo:
This paper describes the implementation, using a microprocessor, of a self-tuning control algorithm on a heating system. The algorithm is based on recursive least squares parameter estimation with a state-space, pole placement design criterion and shows how the controller behaves when applied to an actual system.
Resumo:
For linear multivariable time-invariant continuous or discrete-time singular systems it is customary to use a proportional feedback control in order to achieve a desired closed loop behaviour. Derivative feedback is rarely considered. This paper examines how derivative feedback in descriptor systems can be used to alter the structure of the system pencil under various controllability conditions. It is shown that derivative and proportional feedback controls can be constructed such that the closed loop system has a given form and is also regular and has index at most 1. This property ensures the solvability of the resulting system of dynamic-algebraic equations. The construction procedures used to establish the theory are based only on orthogonal matrix decompositions and can therefore be implemented in a numerically stable way. The problem of pole placement with derivative feedback alone and in combination with proportional state feedback is also investigated. A computational algorithm for improving the “conditioning” of the regularized closed loop system is derived.
Marker placement to describe the wrist movements during activities of daily living in cyclical tasks
Resumo:
Objective. To describe the wrist kinematics during movement through free range of motion and activities of daily living using a cyclical task. Design. The wrist angles were initially calculated in a calibration trial and then in two selected activities of daily living (jar opening and carton pouring). Background. Existing studies which describe the wrist movement do not address the specific application of daily activities. Moreover, the data presented from subject to subject may differ simply because of the non-cyclical nature of the upper limbs movements. Methods. The coordinates of external markers attached to bone references on the forearm and dorsal side of the hand were obtained using an optical motion capture system. The wrist angles were derived from free motion trials and successively calculated in four healthy subjects for two specific cyclical daily activities (opening a jar and pouring from a carton). Results. The free motions trial highlighted the interaction between the wrist angles. Both the jar opening and the carton pouring activity showed a repetitive pattern for the three angles within the cycle length. In the jar-opening task, the standard deviation for the whole population was 10.8degrees for flexion-extension, 5.3degrees for radial-ulnar deviation and 10.4degrees for pronation-supination. In the carton-pouring task, the standard deviation for the whole population was 16.0degrees for flexion-extension, 3.4degrees for radial-ulnar deviation and 10.7degrees for pro nation-supination. Conclusion. Wrist kinematics in healthy subjects can be successfully described by the rotations about the axes of marker-defined coordinates systems during free range of motion and daily activities using cyclical tasks.
Resumo:
A new self-tuning implicit pole-assignment algorithm is presented which, through the use of a pole compression factor and different RLS model and control structures, overcomes stability and convergence problems encountered in previously available algorithms. Computational requirements of the technique are much reduced when compared to explicit pole-assignment schemes, whereas the inherent robustness of the strategy is retained.
Children playing branded video games: The impact of interactivity on product placement effectiveness
Resumo:
This study extends product placement research by testing the impact of interactivity on product placement effectiveness. The results suggest that when children cannot interact with the placements in video games, perceptual fluency is the underlying mechanism leading to positive affect. Therefore, the effects are only evident in a stimulus-based choice where the same stimulus is provided as a cue. However, when children have the opportunity to interact with the placements in video games, they may be influenced by conceptual fluency. Thus, placements are still effective in a memory-based choice where no stimulus is provided as a cue. Keywords: Perceptual fluency; Conceptual fluency; Video games; Interactivity; Children; Product placement