20 resultados para Oxygenated xanthones
Resumo:
The flavour characteristics of fresh and processed pennywort juices treated by pasteurization, sterilization and high pressure processing (HPP) were investigated by using solid-phase micro-extraction combined with gas chromatography-mass spectrometry. Sesquiterpene hydrocarbons comprised the major class of volatile components present and the juices had a characteristic smell due to the presence of volatile compounds including β-caryophyllene, humulene, E-β-farnesene, α-copaene, alloaromadendrene and β-elemene. All processing operations caused a reduction in the total volatile concentration, but HPP caused more volatile acyclic alcohols, aldehydes and oxygenated monoterpenoids to be retained than pasteurization and sterilization. Ketones were not present in fresh pennywort juice, but 2-butanone and 3-nonen-2-one were generated in all processed juices, and 2-nonanone and 2-hexanone were present in pasteurized and sterilized juices. Other chemical changes including isomerization were also reduced by HPP compared to pasteurization, and sterilization.
Resumo:
The spatial distribution of aerosol chemical composition and the evolution of the Organic Aerosol (OA) fraction is investigated based upon airborne measurements of aerosol chemical composition in the planetary boundary layer across Europe. Sub-micron aerosol chemical composition was measured using a compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS). A range of sampling conditions were evaluated, including relatively clean background conditions, polluted conditions in North-Western Europe and the near-field to far-field outflow from such conditions. Ammonium nitrate and OA were found to be the dominant chemical components of the sub-micron aerosol burden, with mass fractions ranging from 20--50% each. Ammonium nitrate was found to dominate in North-Western Europe during episodes of high pollution, reflecting the enhanced NO_x and ammonia sources in this region. OA was ubiquitous across Europe and concentrations generally exceeded sulphate by 30--160%. A factor analysis of the OA burden was performed in order to probe the evolution across this large range of spatial and temporal scales. Two separate Oxygenated Organic Aerosol (OOA) components were identified; one representing an aged-OOA, termed Low Volatility-OOA and another representing fresher-OOA, termed Semi Volatile-OOA on the basis of their mass spectral similarity to previous studies. The factors derived from different flights were not chemically the same but rather reflect the range of OA composition sampled during a particular flight. Significant chemical processing of the OA was observed downwind of major sources in North-Western Europe, with the LV-OOA component becoming increasingly dominant as the distance from source and photochemical processing increased. The measurements suggest that the aging of OA can be viewed as a continuum, with a progression from a less oxidised, semi-volatile component to a highly oxidised, less-volatile component. Substantial amounts of pollution were observed far downwind of continental Europe, with OA and ammonium nitrate being the major constituents of the sub-micron aerosol burden. Such anthropogenically perturbed air masses can significantly perturb regional climate far downwind of major source regions.
Resumo:
Background: Eicosanoids are biologically active, oxygenated metabolites of three C20 polyunsaturated fatty acids. They act as signalling molecules within the autocrine or paracrine system in both vertebrates and invertebrates mainly functioning as important mediators in reproduction, the immune system and ion transport. The biosynthesis of eicosanoids has been intensively studied in mammals and it is known that they are synthesised from the fatty acid, arachidonic acid, through either the cyclooxygenase (COX) pathway; the lipoxygenase (LOX) pathway; or the cytochrome P450 epoxygenase pathway. However, little is still known about the synthesis and structure of the pathway in invertebrates. Results: Here, we show transcriptomic evidence from Daphnia magna (Crustacea: Branchiopoda) together with a bioinformatic analysis of the D. pulex genome providing insight on the role of eicosanoids in these crustaceans as well as outlining a putative pathway of eicosanoid biosynthesis. Daphnia appear only to have one copy of the gene encoding the key enzyme COX, and phylogenetic analysis reveals that the predicted protein sequence of Daphnia COX clusters with other invertebrates. There is no current evidence of an epoxygenase pathway in Daphnia; however, LOX products are most certainly synthesised in daphnids. Conclusion: We have outlined the structure of eicosanoid biosynthesis in Daphnia, a key genus in freshwater ecosystems. Improved knowledge of the function and synthesis of eicosanoids in Daphnia and other invertebrates could have important implications for several areas within ecology. This provisional overview of daphnid eicosanoid biosynthesis provides a guide on where to focus future research activities in this area.
Resumo:
Micromorphological characters of the fruiting bodies, such as ascus-type and hymenial amyloidity, and secondary chemistry have been widely employed as key characters in Ascomycota classification. However, the evolution of these characters has yet not been studied using molecular phylogenies. We have used a combined Bayesian and maximum likelihood based approach to trace character evolution on a tree inferred from a combined analysis of nuclear and mitochondrial ribosomal DNA sequences. The maximum likelihood aspect overcomes simplifications inherent in maximum parsimony methods, whereas the Markov chain Monte Carlo aspect renders results independent of any particular phylogenetic tree. The results indicate that the evolution of the two chemical characters is quite different, being stable once developed for the medullary lecanoric acid, whereas the cortical chlorinated xanthones appear to have been lost several times. The current ascus-types and the amyloidity of the hymenial gel in Pertusariaceae appear to have been developed within the family. The basal ascus-type of pertusarialean fungi remains unknown. (c) 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 89, 615-626.
Resumo:
Artemisinic acid labeled with both C-13 and H-2 at the 15-position has been fed to intact plants of Artemisia annua via the cut stem, and its in vivo transformations studied by 1D- and 2D-NMR spectroscopy. Seven labeled metabolites have been isolated, all of which are known as natural products from this species. The transformations of artemisinic acid-as observed both for a group of plants, which was kept alive by hydroponic administration of water and for a group, which was allowed to die by desiccation-closely paralleled those, which have been recently described for its 11,13-dihydro analog, dihydroartemisinic acid. It seems likely therefore that similar mechanisms, involving spontaneous autoxidation of the Delta(4,5) double bond in both artemisinic acid and dihydroartemisinic acid and subsequent rearrangements of the resultant allylic hydroperoxides, may be involved in the biological transformations, which are undergone by both compounds. All of the sesquiterpene metabolites, which were obtained from in vivo transformations of artemisinic acid retained their unsaturation at the 11,13-position, and there was no evidence for conversion into any 11,13-dihydro metabolite, including artemisinin, the antimalarial drug, which is produced by A. annua. This observation led to the proposal of a unified biosynthetic scheme, which accounts for the biogenesis of many of the amorphane and cadinane sesquiterpenes that have been isolated as natural products from A. annua. In this scheme, there is a bifurcation in the biosynthetic pathway starting from amorpha-4,11-diene leading to either artemisinic acid or dihydroartemisinic acid; these two committed precursors are then, respectively, the parents for the two large families of highly oxygenated 11,13-dehydro and 11,13-dihydro sesquiterpene metabolites, which are known from this species. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Following on from the companion study (Johnson et al., 2006), a photochemical trajectory model (PTM) has been used to simulate the chemical composition of organic aerosol for selected events during the 2003 TORCH (Tropospheric Organic Chemistry Experiment) field campaign. The PTM incorporates the speciated emissions of 124 nonmethane anthropogenic volatile organic compounds (VOC) and three representative biogenic VOC, a highly-detailed representation of the atmospheric degradation of these VOC, the emission of primary organic aerosol (POA) material and the formation of secondary organic aerosol (SOA) material. SOA formation was represented by the transfer of semi and non-volatile oxidation products from the gas-phase to a condensed organic aerosol-phase, according to estimated thermodynamic equilibrium phase-partitioning characteristics for around 2000 reaction products. After significantly scaling all phase-partitioning coefficients, and assuming a persistent background organic aerosol (both required in order to match the observed organic aerosol loadings), the detailed chemical composition of the simulated SOA has been investigated in terms of intermediate oxygenated species in the Master Chemical Mechanism, version 3.1 ( MCM v3.1). For the various case studies considered, 90% of the simulated SOA mass comprises between ca. 70 and 100 multifunctional oxygenated species derived, in varying amounts, from the photooxidation of VOC of anthropogenic and biogenic origin. The anthropogenic contribution is dominated by aromatic hydrocarbons and the biogenic contribution by alpha-and beta-pinene (which also constitute surrogates for other emitted monoterpene species). Sensitivity in the simulated mass of SOA to changes in the emission rates of anthropogenic and biogenic VOC has also been investigated for 11 case study events, and the results have been compared to the detailed chemical composition data. The role of accretion chemistry in SOA formation, and its implications for the results of the present investigation, is discussed.
Resumo:
A photochemical trajectory model has been used to simulate the chemical evolution of air masses arriving at the TORCH field campaign site in the southern UK during late July and August 2003, a period which included a widespread and prolonged photochemical pollution episode. The model incorporates speciated emissions of 124 nonmethane anthropogenic VOC and three representative biogenic VOC, coupled with a comprehensive description of the chemistry of their degradation. A representation of the gas/aerosol absorptive partitioning of ca. 2000 oxygenated organic species generated in the Master Chemical Mechanism (MCM v3.1) has been implemented, allowing simulation of the contribution to organic aerosol (OA) made by semi- and non-volatile products of VOC oxidation; emissions of primary organic aerosol (POA) and elemental carbon (EC) are also represented. Simulations of total OA mass concentrations in nine case study events (optimised by comparison with observed hourly-mean mass loadings derived from aerosol mass spectrometry measurements) imply that the OA can be ascribed to three general sources: (i) POA emissions; (ii) a '' ubiquitous '' background concentration of 0.7 mu g m(-3); and (iii) gas-to-aerosol transfer of lower volatility products of VOC oxidation generated by the regional scale processing of emitted VOC, but with all partitioning coefficients increased by a species-independent factor of 500. The requirement to scale the partitioning coefficients, and the implied background concentration, are both indicative of the occurrence of chemical processes within the aerosol which allow the oxidised organic species to react by association and/or accretion reactions which generate even lower volatility products, leading to a persistent, non-volatile secondary organic aerosol (SOA). The contribution of secondary organic material to the simulated OA results in significant elevations in the simulated ratio of organic carbon (OC) to EC, compared with the ratio of 1.1 assigned to the emitted components. For the selected case study events, [OC]/[EC] is calculated to lie in the range 2.7-9.8, values which are comparable with the high end of the range reported in the literature.
Resumo:
Experimental difficulties sometimes force modellers to use predicted rate coefficients for reactions of oxygenated volatile organic compounds (oVOCs). We examine here methods for making the predictions for reactions of atmospheric initiators of oxidation, NO3, OH, O-3 and O(P-3), with unsaturated alcohols and ethers. Logarithmic correlations are found between measured rate coefficients and calculated orbital energies, and these correlations may be used directly to estimate rate coefficients for compounds where measurements have not been performed. To provide a shortcut that obviates the need to calculate orbital energies, structure-activity relations (SARs) are developed. Our SARs are tested for predictive power against compounds for which experimental rate coefficients exist, and their accuracy is discussed. Estimated atmospheric lifetimes for oVOCs are presented. The SARs for alkenols successfully predict key rate coefficients, and thus can be used to enhance the scope of atmospheric models incorporating detailed chemistry. SARs for the ethers have more limited applicability, but can still be useful in improving tropospheric models. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
oxovanadium(V) salicylhydroximate complexes, [VO(SHA)(H2O)]center dot 1.58H(2)O (1) and [V3O3(CSHA)(3) (H2O)(3)]center dot 3CH(3)COCH(3) (2) have been synthesized by reaction of VO43- with N-salicyl hydroxamic acid (SHAHS) and N-(5-chlorosalicyl) hydroxamic acid (CSHAH(3)), respectively, in methanol medium. Compound 1 on reaction with pyridine 2,6-dicarboxylic acid (PyDCH2) yields mononuclear complex [VO(SHAH(2))(PyDC)] (3). Treatment of compound 3 with hydrogen peroxide at low pH (2-3) and low temperature (0-5 degrees C) yields a stable oxoperoxovanadium(V) complex H[VO(O-2)(PyDC)(H2O)]center dot 2.5H(2)O (4). All four complexes (1-4) have been characterized by spectroscopic (IR, UV-Vis, V-51 NMR) and single crystal X-ray analyses. Intermolecular hydrogen bonds link complex 1 into hexanuclear clusters consisting of six {VNO5} octahedra surrounded by twelve {VNO5} octahedra to form an annular ring. While the molecular packing in 2 generates a two-dimensional framework hydrogen bonds involving the solvent acetone molecules, the mononuclear complexes 3 and 4 exhibit three-dimensional supramolecular architecture. The compounds 1 and 2 behave as good catalysts for oxygenation of benzylic, aromatic, carbocyclic and aliphatic hydrocarbons to their corresponding hydroxylated and oxygenated products using H2O2 as terminal oxidant; the process affords very good yield and turnover number. The catalysis work shows that cyclohexane is a very easily oxidizable substrate giving the highest turnover number (TON) while n-hexane and n-heptane show limited yield, longer time involvement and lesser TON than other hydrocarbons. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Using combination of Mn-Co transition metal species with N-hydroxyphthalimide as a catalyst for one-step oxidation of cyclohexane with molecular oxygen in acetic acid at 353 K can give more than 95% selectivity towards oxygenated products with adipic acid as a major product at a high conversion (ca. 78%). A turnover number of 74 for this partial oxidation are also recorded.
Resumo:
Essential oils have been widely used in traditional medicine for the eradication of lice, including head lice, but due to the variability of their constitution the effects may not be reproducible. In an attempt to assess the contribution of their component monoterpenoids, a range of common individual compounds were tested in in vitro toxicity model against both human lice (Pediculus humanus, an accepted model of head lice lethality) and their eggs, at different concentrations. No detailed study into the relative potencies of their constituent terpenoids has so far been published. Adult lice were observed for lack of response to stimuli over 3 h and the LT50 calculated, and the percentage of eggs failing to hatch was used to generate ovicidal activity data. A ranking was compiled for adult lice and partially for eggs, enabling structure-activity relationships to be assessed for lethality to both, and showed that, for activity in both life-cycle stages, different structural criteria were required. (+)-Terpinen-4-ol was the most effective compound against adult lice, followed by other mono-oxygenated monocyclic compounds, whereas nerolidol was particularly lethal to eggs, but ineffective against adult lice. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The North Atlantic Marine Boundary Layer Experiment (NAMBLEX), involving over 50 scientists from 12 institutions, took place at Mace Head, Ireland (53.32° N, 9.90° W), between 23 July and 4 September 2002. A wide range of state-of-the-art instrumentation enabled detailed measurements of the boundary layer structure and atmospheric composition in the gas and aerosol phase to be made, providing one of the most comprehensive in situ studies of the marine boundary layer to date. This overview paper describes the aims of the NAMBLEX project in the context of previous field campaigns in the Marine Boundary Layer (MBL), the overall layout of the site, a summary of the instrumentation deployed, the temporal coverage of the measurement data, and the numerical models used to interpret the field data. Measurements of some trace species were made for the first time during the campaign, which was characterised by predominantly clean air of marine origin, but more polluted air with higher levels of NOx originating from continental regions was also experienced. This paper provides a summary of the meteorological measurements and Planetary Boundary Layer (PBL) structure measurements, presents time series of some of the longer-lived trace species (O3, CO, H2, DMS, CH4, NMHC, NOx, NOy, PAN) and summarises measurements of other species that are described in more detail in other papers within this special issue, namely oxygenated VOCs, HCHO, peroxides, organo-halogenated species, a range of shorter lived halogen species (I2, OIO, IO, BrO), NO3 radicals, photolysis frequencies, the free radicals OH, HO2 and (HO2+Σ RO2), as well as a summary of the aerosol measurements. NAMBLEX was supported by measurements made in the vicinity of Mace Head using the NERC Dornier-228 aircraft. Using ECMWF wind-fields, calculations were made of the air-mass trajectories arriving at Mace Head during NAMBLEX, and were analysed together with both meteorological and trace-gas measurements. In this paper a chemical climatology for the duration of the campaign is presented to interpret the distribution of air-mass origins and emission sources, and to provide a convenient framework of air-mass classification that is used by other papers in this issue for the interpretation of observed variability in levels of trace gases and aerosols.
Resumo:
The Chinese medicinal plant Artemisia annua L. (Qinghao) is the only known source of the sesquiterpene artemisinin (Qinghaosu), which is used in the treatment of malaria. Artemisinin is a highly oxygenated sesquiterpene, containing a unique 1,2,4-trioxane ring structure, which is responsible for the antimalarial activity of this natural product. The phytochemistry of A. annua is dominated by both sesquiterpenoids and flavonoids, as is the case for many other plants in the Asteraceae family. However, A. annua is distinguished from the other members of the family both by the very large number of natural products which have been characterised to date (almost six hundred in total, including around fifty amorphane and cadinane sesquiterpenes), and by the highly oxygenated nature of many of the terpenoidal secondary metabolites. In addition, this species also contains an unusually large number of terpene allylic hydroperoxides and endoperoxides. This observation forms the basis of a proposal that the biogenesis of many of the highly oxygenated terpene metabolites from A. annua - including artemisinin itself may proceed by spontaneous oxidation reactions of terpene precursors, which involve these highly reactive allyllic hydroperoxides as intermediates. Although several studies of the biosynthesis of artemisinin have been reported in the literature from the 1980s and early 1990s, the collective results from these studies were rather confusing because they implied that an unfeasibly large number of different sesquiterpenes could all function as direct precursors to artemisinin (and some of the experiments also appeared to contradict one another). As a result, the complete biosynthetic pathway to artemisinin could not be stated conclusively at the time. Fortunately, studies which have been published in the last decade are now providing a clearer picture of the biosynthetic pathways in A. annua. By synthesising some of the sesquiterpene natural products which have been proposed as biogenetic precursors to artemisinin in such a way that they incorporate a stable isotopic label, and then feeding these precursors to intact A. annua plants, it has now been possible to demonstrate that dihydroartemisinic acid is a late-stage precursor to artemisinin and that the closely related secondary metabolite, artemisinic acid, is not (this approach differs from all the previous studies, which used radio-isotopically labelled precursors that were fed to a plant homogenate or a cell-free preparation). Quite remarkably, feeding experiments with labeled dihydroartemisinic acid and artemisinic acid have resulted in incorporation of label into roughly half of all the amorphane and cadinane sesquiterpenes which were already known from phytochemical studies of A. annua. These findings strongly support the hypothesis that many of the highly oxygenated sesquiterpenoids from this species arise by oxidation reactions involving allylic hydroperoxides, which seem to be such a defining feature of the chemistry of A. annua. In the particular case of artemisinin, these in vivo results are also supported by in vitro studies, demonstrating explicitly that the biosynthesis of artemisinin proceeds via the tertiary allylic hydroperoxide, which is derived from oxidation of dihydroartemisinic acid. There is some evidence that the autoxidation of dihydroartemisinic acid to this tertiary allylic hydroperoxide is a non-enzymatic process within the plant, requiring only the presence of light; and, furthermore, that the series of spontaneous rearrangement reactions which then convert thi allylic hydroperoxide to the 1,2,4-trioxane ring of artemisinin are also non-enzymatic in nature.
Resumo:
A detailed geochemical analysis was performed on the upper part of the Maiolica Formation in the Breggia (southern Switzerland) and Capriolo sections (northern Italy). The analysed sediments consist of well-bedded, partly siliceous, pelagic carbonate, which lodges numerous thin, dark and organic-rich layers. Stable-isotope, phosphorus, organic-carbon and a suite of redox-sensitive trace-element contents (RSTE: Mo, U, Co, V and As) were measured. The RSTE pattern and Corg:Ptot ratios indicate that most organic-rich layers were deposited under dysaerobic rather than anaerobic conditions and that latter conditions were likely restricted to short intervals in the latest Hauterivian, the early Barremian and the pre-Selli early Aptian. Correlations are both possible with organic-rich intervals in central Italy (the Gorgo a Cerbara section) and the Boreal Lower Saxony Basin, as well as with the facies and drowning pattern in the Helvetic segment of the northern Tethyan carbonate platform. Our data and correlations suggest that the latest Hauterivian witnessed the progressive installation of dysaerobic conditions in the Tethys, which went along with the onset in sediment condensation, phosphogenesis and platform drowning on the northern Tethyan margin, and which culminated in the Faraoni anoxic episode. This episode is followed by further episodes of dysaerobic conditions in the Tethys and the Lower Saxony Basin, which became more frequent and progressively stronger in the late early Barremian. Platform drowning persisted and did not halt before the latest early Barremian. The late Barremian witnessed diminishing frequencies and intensities in dysaerobic conditions, which went along with the progressive installation of the Urgonian carbonate platform. Near the Barremian-Aptian boundary, the increasing density in dysaerobic episodes in the Tethyan and Lower Saxony Basins is paralleled by a change towards heterozoan carbonate production on the northern Tethyan shelf. The following return to more oxygenated conditions is correlated with the second phase of Urgonian platform growth and the period immediately preceding and corresponding to the Selli anoxic episode is characterised by renewed platform drowning and the change to heterozoan carbonate production. Changes towards more humid climate conditions were the likely cause for the repetitive installation of dys- to anaerobic conditions in the Tethyan and Boreal basins and the accompanying changes in the evolution of the carbonate platform towards heterozoan carbonate-producing ecosystems and platform drowning.