45 resultados para On-line data
Resumo:
Background: The computational grammatical complexity ( CGC) hypothesis claims that children with G(rammatical)-specific language impairment ( SLI) have a domain-specific deficit in the computational system affecting syntactic dependencies involving 'movement'. One type of such syntactic dependencies is filler-gap dependencies. In contrast, the Generalized Slowing Hypothesis claims that SLI children have a domain-general deficit affecting processing speed and capacity. Aims: To test contrasting accounts of SLI we investigate processing of syntactic (filler-gap) dependencies in wh-questions. Methods & Procedures: Fourteen 10; 2 - 17; 2 G-SLI children, 14 age- matched and 17 vocabulary-matched controls were studied using the cross- modal picturepriming paradigm. Outcomes & Results: G-SLI children's processing speed was significantly slower than the age controls, but not younger vocabulary controls. The G- SLI children and vocabulary controls did not differ on memory span. However, the typically developing and G-SLI children showed a qualitatively different processing pattern. The age and vocabulary controls showed priming at the gap, indicating that they process wh-questions through syntactic filler-gap dependencies. In contrast, G-SLI children showed priming only at the verb. Conclusions: The findings indicate that G-SLI children fail to establish reliably a syntactic filler- gap dependency and instead interpret wh-questions via lexical thematic information. These data challenge the Generalized Slowing Hypothesis account, but support the CGC hypothesis, according to which G-SLI children have a particular deficit in the computational system affecting syntactic dependencies involving 'movement'. As effective remediation often depends on aetiological insight, the discovery of the nature of the syntactic deficit, along side a possible compensatory use of semantics to facilitate sentence processing, can be used to direct therapy. However, the therapeutic strategy to be used, and whether such similar strengths and weaknesses within the language system are found in other SLI subgroups are empirical issues that warrant further research.
Resumo:
In this paper, we present an on-line estimation algorithm for an uncertain time delay in a continuous system based on the observational input-output data, subject to observational noise. The first order Pade approximation is used to approximate the time delay. At each time step, the algorithm combines the well known Kalman filter algorithm and the recursive instrumental variable least squares (RIVLS) algorithm in cascade form. The instrumental variable least squares algorithm is used in order to achieve the consistency of the delay parameter estimate, since an error-in-the-variable model is involved. An illustrative example is utilized to demonstrate the efficacy of the proposed approach.
Resumo:
Measuring the retention, or residence time, of dosage forms to biological tissue is commonly a qualitative measurement, where no real values to describe the retention can be recorded. The result of this is an assessment that is dependent upon a user's interpretation of visual observation. This research paper outlines the development of a methodology to quantitatively measure, both by image analysis and by spectrophotometric techniques, the retention of material to biological tissues, using the retention of polymer solutions to ocular tissue as an example. Both methods have been shown to be repeatable, with the spectrophotometric measurement generating data reliably and quickly for further analysis.
Resumo:
We investigated the on-line processing of unaccusative and unergative sentences in a group of eight Greek-speaking individuals diagnosed with Broca aphasia and a group of language-unimpaired subjects used as the baseline. The processing of unaccusativity refers to the reactivation of the postverbal trace by retrieving the mnemonic representation of the verb’s syntactically defined antecedent provided in the early part of the sentence. Our results demonstrate that the Broca group showed selective reactivation of the antecedent for the unaccusatives. We consider several interpretations for our data, including explanations focusing on the transitivization properties of nonactive and active voice-alternating unaccusatives, the costly procedure claimed to underlie the parsing of active nonvoice-alternating unaccusatives, and the animacy of the antecedent modulating the syntactic choices of the patients.
Resumo:
This paper introduces a new adaptive nonlinear equalizer relying on a radial basis function (RBF) model, which is designed based on the minimum bit error rate (MBER) criterion, in the system setting of the intersymbol interference channel plus a co-channel interference. Our proposed algorithm is referred to as the on-line mixture of Gaussians estimator aided MBER (OMG-MBER) equalizer. Specifically, a mixture of Gaussians based probability density function (PDF) estimator is used to model the PDF of the decision variable, for which a novel on-line PDF update algorithm is derived to track the incoming data. With the aid of this novel on-line mixture of Gaussians based sample-by-sample updated PDF estimator, our adaptive nonlinear equalizer is capable of updating its equalizer’s parameters sample by sample to aim directly at minimizing the RBF nonlinear equalizer’s achievable bit error rate (BER). The proposed OMG-MBER equalizer significantly outperforms the existing on-line nonlinear MBER equalizer, known as the least bit error rate equalizer, in terms of both the convergence speed and the achievable BER, as is confirmed in our simulation study
Resumo:
We report on the first realtime ionospheric predictions network and its capabilities to ingest a global database and forecast F-layer characteristics and "in situ" electron densities along the track of an orbiting spacecraft. A global network of ionosonde stations reported around-the-clock observations of F-region heights and densities, and an on-line library of models provided forecasting capabilities. Each model was tested against the incoming data; relative accuracies were intercompared to determine the best overall fit to the prevailing conditions; and the best-fit model was used to predict ionospheric conditions on an orbit-to-orbit basis for the 12-hour period following a twice-daily model test and validation procedure. It was found that the best-fit model often provided averaged (i.e., climatologically-based) accuracies better than 5% in predicting the heights and critical frequencies of the F-region peaks in the latitudinal domain of the TSS-1R flight path. There was a sharp contrast however, in model-measurement comparisons involving predictions of actual, unaveraged, along-track densities at the 295 km orbital altitude of TSS-1R In this case, extrema in the first-principle models varied by as much as an order of magnitude in density predictions, and the best-fit models were found to disagree with the "in situ" observations of Ne by as much as 140%. The discrepancies are interpreted as a manifestation of difficulties in accurately and self-consistently modeling the external controls of solar and magnetospheric inputs and the spatial and temporal variabilities in electric fields, thermospheric winds, plasmaspheric fluxes, and chemistry.
On-line Gaussian mixture density estimator for adaptive minimum bit-error-rate beamforming receivers
Resumo:
We develop an on-line Gaussian mixture density estimator (OGMDE) in the complex-valued domain to facilitate adaptive minimum bit-error-rate (MBER) beamforming receiver for multiple antenna based space-division multiple access systems. Specifically, the novel OGMDE is proposed to adaptively model the probability density function of the beamformer’s output by tracking the incoming data sample by sample. With the aid of the proposed OGMDE, our adaptive beamformer is capable of updating the beamformer’s weights sample by sample to directly minimize the achievable bit error rate (BER). We show that this OGMDE based MBER beamformer outperforms the existing on-line MBER beamformer, known as the least BER beamformer, in terms of both the convergence speed and the achievable BER.
Resumo:
Obesity prevalence is increasing. The management of this condition requires a detailed analysis of the global risk factors in order to develop personalised advice. This study is aimed to identify current dietary patterns and habits in Spanish population interested in personalised nutrition and investigate associations with weight status. Self-reported dietary and anthropometrical data from the Spanish participants in the Food4Me study, were used in a multidimensional exploratory analysis to define specific dietary profiles. Two opposing factors were obtained according to food groups’ intake: Factor 1 characterised by a more frequent consumption of traditionally considered unhealthy foods; and Factor 2, where the consumption of “Mediterranean diet” foods was prevalent. Factor 1 showed a direct relationship with BMI (β = 0.226; r2 = 0.259; p < 0.001), while the association with Factor 2 was inverse (β = −0.037; r2 = 0.230; p = 0.348). A total of four categories were defined (Prudent, Healthy, Western, and Compensatory) through classification of the sample in higher or lower adherence to each factor and combining the possibilities. Western and Compensatory dietary patterns, which were characterized by high-density foods consumption, showed positive associations with overweight prevalence. Further analysis showed that prevention of overweight must focus on limiting the intake of known deleterious foods rather than exclusively enhance healthy products.
On-line processing of sentences involving reflexive and non-reflexive pronouns in L1 and L2 children