42 resultados para Nutrients in foliar area and mycorrhizal colonization
Resumo:
Twenty-eight field experiments on sandy-loam soils in the UK (1982-2003) are reviewed by relating the extension of the green area duration of the flag leaf (GLADF) by fungicides to effects on yield and quality of winter wheat. Over all experiments mean grain yield = 8.85t ha(-1) at 85% DM. With regards quality, mean values were: thousand grain weight (TGW) = 44.5 g; specific weight (SWT) = 76.9 kg hl(-1); crude protein concentration (CP (N x 5.7)) = 12.5 % DM; Hagberg falling number (HFN) = 285 s; and sodium dodecyl sulphate (SDS)-sedimentation volume = 69ml. For each day (d) that fungicides increased GLADF there were associated average increases in yield (0.144 1 ha(-1) d(-1), se 0.0049, df = 333), TGW (0.56 gd(-1), se = 0.017) and SWT (0.22 kg hl(-1) d(-1), se 0.011). Some curvature was evident in all these relationships. When GLADF was delayed beyond 700 degrees Cd after anthesis, as was possible in cool wet seasons, responses were curtailed, or less reliable. Despite this apparent terminal sink limitation, fungicide effects on sink size, eg endosperm cell numbers or maximum water mass per grain, were not prerequisites for large effects on grain yield, TGW or SWT. Fungicide effects on CP were variable. Although the average response of CP was negative (-0.029%DM/d; se = 0.00338), this depended on cultivar and disease controlled. Controlling biotrophs such as rusts, (Puccinia spp.) tended to increase CP, whereas controlling a more necrotrophic pathogen (Septoria tritici) usually reducedCP. Irrespective of pathogen controlled, delaying senescence of the flag leaf was associated with increased nitrogen yields in the grain (averaging 2.24 kg N ha-1 d(-1), se = 0.0848) due to both increased N uptake into the above ground crop, and also more efficient remobilisation of N from leaf laminas. When sulphur availability appeared to be adequate, fungicide x cultivar interactions were similar on S as for CP, although N:S ratios tended to decline (i.e. improve for bread making) when S. tritici was controlled. On average, SDS-sedimentation volume declined (-0. 18 ml/d, se = 0.027) with increased GLADF, broadly commensurate with the average effect on CP. Hagberg falling number decreased as fungicide increased GLADF (-2.73 s/d, se = 0.178), indicating an increase in alpha-amylase activity.
Resumo:
Tomato plants (Lycopersicon esculentum Mill. 'DRK') were grown hydroponically in two experiments to determine the effects of nutrient concentration and distribution in the root zone on yield, quality and blossom end rot (BER). The plants were grown in rockwool with their root systems divided into two portions. Each portion was irrigated with nutrient solutions with either the same or different electrical conductivity (EC) in the range 0 to 6 dS m(-1). In both experiments, fruit yields decreased as EC increased from moderate to high when solutions of equal concentration were applied to both portions of the root system. However, higher yields were obtained when a solution with high EC was applied to one portion of the root system and a solution of low EC to the other portion. For example, the fresh weight of mature fruits in the 6/6 treatment was only 20% that of the 3/3 treatment but the 6/0 treatment had a yield that was 40% higher. The reduction in yield in the high EC treatments was due to an increase in the number of fruits with BER and smaller fruit size. BER increased from 12% to 88% of total fruits as EC increased from 6/0 to 6/6 and fruit length decreased from 67 mm to 52 mm. Fruit quality (expressed as titratable acidity and soluble solids) increased as EC increased. In summary, high yields of high quality tomatoes with minimal incidence of BER were obtained when one portion of the root system was supplied with a solution of high EC and the other portion with a solution of moderate or zero EC.
Resumo:
Tomato plants ( Lycopersicon esculentum Mill. var. DRK) were grown hydroponically to determine the effect of an uneven distribution of nutrients in the root zone on blossomend rot (BER) and Ca and K concentrations in the fruits. The plants were grown in rockwool with their root system divided into two portions. Each portion was irrigated with nutrient solutions with either the same or the different electrical conductivity (EC) in the range 0 to 6 dS m(-1). Solutions with high EC supplied to both sides of the root system significantly increased the incidence of BER. However, when only water or a solution of low EC was supplied to one portion, BER was reduced by 80%. Fruit yields were significantly higher ( P < 0.01) for plants that received solutions of the uneven EC treatments (6/0 or 4.5/0 EC treatment). Plants supplied with solutions of uneven EC generally had higher leaf and fruit concentrations of Ca but lower concentrations of K than those supplied with solutions of high EC. There was no difference in Ca concentration at the distal end of young fruits of the uneven EC treatment but it was reduced in the high EC treatments. The concentration of K in the mature fruits of the uneven EC treatments was lower than that of the high EC treatments and higher or similar that of the 3/3 or 2.5/2.5 EC treatments ( controls). A clear relationship was found between the incidence of BER and the exudation rate. High rate of xylem exudation was observed in the uneven EC treatments. Reduction of BER in the uneven EC treatments is most likely to be the effect of high exudation rate on Ca status in the young fruits. It was concluded that high EC of solution had positive effects on Ca concentration and incidence of BER provided that nutrient solution with low EC or water is supplied to the one portion of the root system.
Resumo:
Complementarity in acquisition of nitrogen (N) from soil and N-2-fixation within pea and barley intercrops was studied in organic field experiments across Western Europe (Denmark, United Kingdom, France, Germany and Italy). Spring pea and barley were sown either as sole crops, at the recommended plant density (P100 and B100, respectively) or in replacement (P50B50) or additive (P100B50) intercropping designs, in each of three cropping seasons (2003-2005). Irrespective of site and intercrop design, Land Equivalent Ratios (LER) between 1.4 at flowering and 1.3 at maturity showed that total N recovery was greater in the pea-barley intercrops than in the sole Crops Suggesting a high degree of complementarity over a wide range of growing conditions. Complementarity was partly attributed to greater soil mineral N acquisition by barley, forcing pea to rely more on N-2-fixation. At all sites the proportion of total aboveground pea N that was derived from N-2-fixation was greater when intercropped with barley than when grown as a sole crop. No consistent differences were found between the two intercropping designs. Simultaneously, the accumulation Of Phosphorous (P), potassium (K) and sulphur (S) in Danish and German experiments was 20% higher in the intercrop (P50B50) than in the respective sole crops, possibly influencing general crop yields and thereby competitive ability for other resources. Comparing all sites and seasons, the benefits of organic pea-barley intercropping for N acquisition were highly resilient. It is concluded that pea-barley intercropping is a relevant cropping strategy to adopt when trying to optimize N-2-fixation inputs to the cropping system. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Tomato plants (Lycopersicon esculentum Mill. 'DRK') were grown hydroponically in two experiments to determine the effects of nutrient concentration and distribution in the root zone on yield, quality and blossom end rot (BER). The plants were grown in rockwool with their root systems divided into two portions. Each portion was irrigated with nutrient solutions with either the same or different electrical conductivity (EC) in the range 0 to 6 dS m(-1). In both experiments, fruit yields decreased as EC increased from moderate to high when solutions of equal concentration were applied to both portions of the root system. However, higher yields were obtained when a solution with high EC was applied to one portion of the root system and a solution of low EC to the other portion. For example, the fresh weight of mature fruits in the 6/6 treatment was only 20% that of the 3/3 treatment but the 6/0 treatment had a yield that was 40% higher. The reduction in yield in the high EC treatments was due to an increase in the number of fruits with BER and smaller fruit size. BER increased from 12% to 88% of total fruits as EC increased from 6/0 to 6/6 and fruit length decreased from 67 mm to 52 mm. Fruit quality (expressed as titratable acidity and soluble solids) increased as EC increased. In summary, high yields of high quality tomatoes with minimal incidence of BER were obtained when one portion of the root system was supplied with a solution of high EC and the other portion with a solution of moderate or zero EC.
Resumo:
Tomato plants ( Lycopersicon esculentum Mill. var. DRK) were grown hydroponically to determine the effect of an uneven distribution of nutrients in the root zone on blossomend rot (BER) and Ca and K concentrations in the fruits. The plants were grown in rockwool with their root system divided into two portions. Each portion was irrigated with nutrient solutions with either the same or the different electrical conductivity (EC) in the range 0 to 6 dS m(-1). Solutions with high EC supplied to both sides of the root system significantly increased the incidence of BER. However, when only water or a solution of low EC was supplied to one portion, BER was reduced by 80%. Fruit yields were significantly higher ( P < 0.01) for plants that received solutions of the uneven EC treatments (6/0 or 4.5/0 EC treatment). Plants supplied with solutions of uneven EC generally had higher leaf and fruit concentrations of Ca but lower concentrations of K than those supplied with solutions of high EC. There was no difference in Ca concentration at the distal end of young fruits of the uneven EC treatment but it was reduced in the high EC treatments. The concentration of K in the mature fruits of the uneven EC treatments was lower than that of the high EC treatments and higher or similar that of the 3/3 or 2.5/2.5 EC treatments ( controls). A clear relationship was found between the incidence of BER and the exudation rate. High rate of xylem exudation was observed in the uneven EC treatments. Reduction of BER in the uneven EC treatments is most likely to be the effect of high exudation rate on Ca status in the young fruits. It was concluded that high EC of solution had positive effects on Ca concentration and incidence of BER provided that nutrient solution with low EC or water is supplied to the one portion of the root system.
Resumo:
Changes in area of 30 small glaciers (mostly <1 km2) in the northern Polar Urals (67.5-68.25 °N) between 1953 and 2000 were assessed using historic aerial photography from 1953 and 1960, ASTER and panchromatic Landsat ETM+ imagery from 2000, and data from 1981 and 2008 terrestrial surveys. Changes in volume and geodetic mass balance of IGAN and Obruchev glaciers were calculated using data from terrestrial surveys in 1963 and 2008. In total, glacier area declined by 22.3 ± 3.9% in the 1953/60-2000 period. The areas of individual glaciers decreased by 4-46%. Surfaces of Obruchev and IGAN glaciers lowered by 22.5 ± 1.7 m and 14.9 ± 2.1 m. Over 45 years, geodetic mass balances of Obruchev and IGAN glaciers were -20.66 ± 2.91 and -13.54 ± 2.57 m w.e. respectively. Glacier shrinkage in the Polar Urals is related to a summer warming of 1 °C between 1953-81 and 1981-2008 and its rates are consistent with other regions of northern Asia but are higher than in Scandinavia. While glacier shrinkage intensified in the 1981-2000 period relative to 1953-81, increasing winter precipitation and shading effects slowed glacier wastage in 2000-08.
Resumo:
European beech (Fagus sylvatica L.) and Norway spruce (Picea abies Karst.) are two of the most ecologically and economically important forest tree species in Europe. These two species co-occur in many locations in Europe, leading to direct competition for canopy space. Foliage characteristics of two naturally regenerated pure stands of beech and spruce with fully closed canopies were contrasted to assess the dynamic relationship between foliage adaptability to shading, stand LAI and tree growth. We found that individual leaf size is far more conservative in spruce than in beech. Individual leaf and needle area was larger at the top than at the bottom of the canopy in both species. Inverse relationship was found for specific leaf area (SLA), highest SLA values were found at lowest light availability under the canopy. There was no difference in leaf area index (LAI) between the two stands, however LAI increased from 10.8 to 14.6 m2m-2 between 2009 and 2011. Dominant trees of both species were more efficient in converting foliage mass or area to produce stem biomass, although this relationship changed with age and was species-specific. Overall, we found larger foliage plasticity in beech than in spruce in relation to light conditions, indicating larger capacity to exploit niche openings.
Resumo:
Aquatic sediments often remove hydrophobic contaminants from fresh waters. The subsequent distribution and concentration of contaminants in bed sediments determines their effect on benthic organisms and the risk of re-entry into the water and/or leaching to groundwater. This study examines the transport of simazine and lindane in aquatic bed sediments with the aim of understanding the processes that determine their depth distribution. Experiments in flume channels (water flow of 10 cm s(-1)) determined the persistence of the compounds in the absence of sediment with (a) de-ionised water and (b) a solution that had been in contact with river sediment. In further experiments with river bed sediments in light and dark conditions, measurements were made of the concentration of the compounds in the overlying water and the development of bacterial/algal biofilms and bioturbation activity. At the end of the experiments, concentrations in sediments and associated pore waters were determined in sections of the sediment at 1 mm resolution down to 5 mm and then at 10 mm resolution to 50 mm depth and these distributions analysed using a sorption-diffusion-degradation model. The fine resolution in the depth profile permitted the detection of a maximum in the concentration of the compounds in the pore water near the surface, whereas concentrations in the sediment increased to a maximum at the surface itself. Experimental distribution coefficients determined from the pore water and sediment concentrations indicated a gradient with depth that was partly explained by an increase in organic matter content and specific surface area of the solids near the interface. The modelling showed that degradation of lindane within the sediment was necessary to explain the concentration profiles, with the optimum agreement between the measured and theoretical profiles obtained with differential degradation in the oxic and anoxic zones. The compounds penetrated to a depth of 40-50 rum over a period of 42 days. (C) 2004 Society of Chemical Industry.
Resumo:
Toxic trace elements present an environmental hazard in the vicinity of mining and smelting activities. However. the processes of transfer of these elements to groundwater and to plants are not always clear. Tharsis mine. in the Iberian pyrite belt (SW Spain), has been exploited since 2500 BC, with extensive smelting, taking place front the 1850S until the 1920s. Sixty four soil (mainly topsoils) and vegetation samples were collected in February 2001 and analysed by ICP-AES for 23 elements. Concentrations are 6-6300 mg kg(-1) As and 14-24800 mg kg(-1) Pb in soils, and 0.20-9 mg kg(-1) As and 2-195 mg Pb in vegetation. Trace element concentrations decrease rapidly away from the mine. with As and Pb concentrations in the range 6-1850 mg kg(-1) (median 22 mg kg(-1)) and 14-31 mg, kg(-1) (median 43 mg, kg(-1)), respectively, 1 km away from the mine. These concentrations are low when compared to other well-studied mining and smelting areas (e.g. 600 mg kg(-1) As at 8 km from Yellowknife smelter, Canada; >100 mg kg(-1) Pb over 270 km(2) around the Pb-Zn Port Pirie smelter. South Australia: mean of 1419 mg kg(-1) Pb around Aberystwyth smelter, Wales, UK). The high metal content of the vegetation and the low soil pH (mean pH 4.93) indicate the potential for trace element mobility which Could explain the relatively low concentration of metals in Tharsis topsoils and cause threats to plans to redevelop the Tharsis area as an orange plantation.
Resumo:
Dissolution rates were calculated for a range of grain sizes of anorthite and biotite dissolved under far from equilibrium conditions at pH 3, T = 20 degrees C. Dissolution rates were normalized to initial and final BET surface area, geometric surface area, mass and (for biotite only) geometric edge surface area. Constant (within error) dissolution rates were only obtained by normalizing to initial BET surface area for biotite. The normalizing term that gave the smallest variation about the mean for anorthite was initial BET surface area. In field studies, only current (final) surface area is measurable. In this study, final geometric surface area gave the smallest variation for anorthite dissolution rates and final geometric edge surface area for biotite dissolution rates. (c) 2005 Published by Elsevier B.V.
Resumo:
The impacts of afforestation at Plynlimon in the Severn catchment, mid-Wales. and in the Bedford Ouse catchment in south-east England are evaluated using the INCA model to simulate Nitrogen (N) fluxes and concentrations. The INCA model represents the key hydrological and N processes operating in catchments and simulates the daily dynamic behaviour as well as the annual fluxes. INCA has been applied to five years of data front the Hafren and Hore headwater sub-catchments (6.8 km(2) area in total) of the River Severn at Plytilimon and the model was calibrated and validated against field data. Simulation of afforestation is achieved by altering the uptake rate parameters in the model. INCA simulates the daily N behaviour in the catchments with good accuracy as well as reconstructing the annual budgets for N release following clearfelling a four-fold increase in N fluxes was followed by a slow recovery after re-afforestation. For comparison, INCA has been applied to the large (8380 km(2)) Bedford Ouse catchment to investigate the impact of replacing 20% arable land with forestry. The reduction in fertiliser inputs from arable farming and the N uptake by the forest are predicted to reduce the N flux reaching the main river system, leading to a 33% reduction in N-Nitrate concentrations in the river water.