71 resultados para Numerical results


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A numerical study of fluid mechanics and heat transfer in a scraped surface heat exchanger with non-Newtonian power law fluids is undertaken. Numerical results are generated for 2D steady-state conditions using finite element methods. The effect of blade design and material properties, and especially the independent effects of shear thinning and heat thinning on the flow and heat transfer, are studied. The results show that the gaps at the root of the blades, where the blades are connected to the inner cylinder, remove the stagnation points, reduce the net force on the blades and shift the location of the central stagnation point. The shear thinning property of the fluid reduces the local viscous dissipation close to the singularity corners, i.e. near the tip of the blades, and as a result the local fluid temperature is regulated. The heat thinning effect is greatest for Newtonian fluids where the viscous dissipation and the local temperature are highest at the tip of the blades. Where comparison is possible, very good agreement is found between the numerical results and the available data. Aspects of scraped surface heat exchanger design are assessed in the light of the results. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider the approximation of some highly oscillatory weakly singular surface integrals, arising from boundary integral methods with smooth global basis functions for solving problems of high frequency acoustic scattering by three-dimensional convex obstacles, described globally in spherical coordinates. As the frequency of the incident wave increases, the performance of standard quadrature schemes deteriorates. Naive application of asymptotic schemes also fails due to the weak singularity. We propose here a new scheme based on a combination of an asymptotic approach and exact treatment of singularities in an appropriate coordinate system. For the case of a spherical scatterer we demonstrate via error analysis and numerical results that, provided the observation point is sufficiently far from the shadow boundary, a high level of accuracy can be achieved with a minimal computational cost.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we consider the problem of time-harmonic acoustic scattering in two dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering problems have a computational cost that grows at least linearly as a function of the frequency of the incident wave. Here we present a novel Galerkin boundary element method, which uses an approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh, with smaller elements closer to the corners of the polygon. We prove that the best approximation from the approximation space requires a number of degrees of freedom to achieve a prescribed level of accuracy that grows only logarithmically as a function of the frequency. Numerical results demonstrate the same logarithmic dependence on the frequency for the Galerkin method solution. Our boundary element method is a discretization of a well-known second kind combined-layer-potential integral equation. We provide a proof that this equation and its adjoint are well-posed and equivalent to the boundary value problem in a Sobolev space setting for general Lipschitz domains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The scattering of small amplitude water waves by a finite array of locally axisymmetric structures is considered. Regions of varying quiescent depth are included and their axisymmetric nature, together with a mild-slope approximation, permits an adaptation of well-known interaction theory which ultimately reduces the problem to a simple numerical calculation. Numerical results are given and effects due to regions of varying depth on wave loading and free-surface elevation are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we investigate the use of the perfectly matched layer (PML) to truncate a time harmonic rough surface scattering problem in the direction away from the scatterer. We prove existence and uniqueness of the solution of the truncated problem as well as an error estimate depending on the thickness and composition of the layer. This global error estimate predicts a linear rate of convergence (under some conditions on the relative size of the real and imaginary parts of the PML function) rather than the usual exponential rate. We then consider scattering by a half-space and show that the solution of the PML truncated problem converges globally at most quadratically (up to logarithmic factors), providing support for our general theory. However we also prove exponential convergence on compact subsets. We continue by proposing an iterative correction method for the PML truncated problem and, using our estimate for the PML approximation, prove convergence of this method. Finally we provide some numerical results in 2D.(C) 2008 IMACS. Published by Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Effective medium approximations for the frequency-dependent and complex-valued effective stiffness tensors of cracked/ porous rocks with multiple solid constituents are developed on the basis of the T-matrix approach (based on integral equation methods for quasi-static composites), the elastic - viscoelastic correspondence principle, and a unified treatment of the local and global flow mechanisms, which is consistent with the principle of fluid mass conservation. The main advantage of using the T-matrix approach, rather than the first-order approach of Eshelby or the second-order approach of Hudson, is that it produces physically plausible results even when the volume concentrations of inclusions or cavities are no longer small. The new formulae, which operates with an arbitrary homogeneous (anisotropic) reference medium and contains terms of all order in the volume concentrations of solid particles and communicating cavities, take explicitly account of inclusion shape and spatial distribution independently. We show analytically that an expansion of the T-matrix formulae to first order in the volume concentration of cavities (in agreement with the dilute estimate of Eshelby) has the correct dependence on the properties of the saturating fluid, in the sense that it is consistent with the Brown-Korringa relation, when the frequency is sufficiently low. We present numerical results for the (anisotropic) effective viscoelastic properties of a cracked permeable medium with finite storage porosity, indicating that the complete T-matrix formulae (including the higher-order terms) are generally consistent with the Brown-Korringa relation, at least if we assume the spatial distribution of cavities to be the same for all cavity pairs. We have found an efficient way to treat statistical correlations in the shapes and orientations of the communicating cavities, and also obtained a reasonable match between theoretical predictions (based on a dual porosity model for quartz-clay mixtures, involving relatively flat clay-related pores and more rounded quartz-related pores) and laboratory results for the ultrasonic velocity and attenuation spectra of a suite of typical reservoir rocks. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we consider the scattering of a plane acoustic or electromagnetic wave by a one-dimensional, periodic rough surface. We restrict the discussion to the case when the boundary is sound soft in the acoustic case, perfectly reflecting with TE polarization in the EM case, so that the total field vanishes on the boundary. We propose a uniquely solvable first kind integral equation formulation of the problem, which amounts to a requirement that the normal derivative of the Green's representation formula for the total field vanish on a horizontal line below the scattering surface. We then discuss the numerical solution by Galerkin's method of this (ill-posed) integral equation. We point out that, with two particular choices of the trial and test spaces, we recover the so-called SC (spectral-coordinate) and SS (spectral-spectral) numerical schemes of DeSanto et al., Waves Random Media, 8, 315-414 1998. We next propose a new Galerkin scheme, a modification of the SS method that we term the SS* method, which is an instance of the well-known dual least squares Galerkin method. We show that the SS* method is always well-defined and is optimally convergent as the size of the approximation space increases. Moreover, we make a connection with the classical least squares method, in which the coefficients in the Rayleigh expansion of the solution are determined by enforcing the boundary condition in a least squares sense, pointing out that the linear system to be solved in the SS* method is identical to that in the least squares method. Using this connection we show that (reflecting the ill-posed nature of the integral equation solved) the condition number of the linear system in the SS* and least squares methods approaches infinity as the approximation space increases in size. We also provide theoretical error bounds on the condition number and on the errors induced in the numerical solution computed as a result of ill-conditioning. Numerical results confirm the convergence of the SS* method and illustrate the ill-conditioning that arises.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerical results are presented and compared for three conservative upwind difference schemes for the Euler equations when applied to two standard test problems. This includes consideration of the effect of treating part of the flux balance as a source, and a comparison of different averaging of the flow variables. Two of the schemes are also shown to be equivalent in their implementation, while being different in construction and having different approximate Jacobians. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We use the point-source method (PSM) to reconstruct a scattered field from its associated far field pattern. The reconstruction scheme is described and numerical results are presented for three-dimensional acoustic and electromagnetic scattering problems. We give new proofs of the algorithms, based on the Green and Stratton-Chu formulae, which are more general than with the former use of the reciprocity relation. This allows us to handle the case of limited aperture data and arbitrary incident fields. Both for 3D acoustics and electromagnetics, numerical reconstructions of the field for different settings and with noisy data are shown. For shape reconstruction in acoustics, we develop an appropriate strategy to identify areas with good reconstruction quality and combine different such regions into one joint function. Then, we show how shapes of unknown sound-soft scatterers are found as level curves of the total reconstructed field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This investigation deals with the question of when a particular population can be considered to be disease-free. The motivation is the case of BSE where specific birth cohorts may present distinct disease-free subpopulations. The specific objective is to develop a statistical approach suitable for documenting freedom of disease, in particular, freedom from BSE in birth cohorts. The approach is based upon a geometric waiting time distribution for the occurrence of positive surveillance results and formalizes the relationship between design prevalence, cumulative sample size and statistical power. The simple geometric waiting time model is further modified to account for the diagnostic sensitivity and specificity associated with the detection of disease. This is exemplified for BSE using two different models for the diagnostic sensitivity. The model is furthermore modified in such a way that a set of different values for the design prevalence in the surveillance streams can be accommodated (prevalence heterogeneity) and a general expression for the power function is developed. For illustration, numerical results for BSE suggest that currently (data status September 2004) a birth cohort of Danish cattle born after March 1999 is free from BSE with probability (power) of 0.8746 or 0.8509, depending on the choice of a model for the diagnostic sensitivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A finite element numerical study has been carried out on the isothermal flow of power law fluids in lid-driven cavities with axial throughflow. The effects of the tangential flow Reynolds number (Re-U), axial flow Reynolds number (Re-W), cavity aspect ratio and shear thinning property of the fluids on tangential and axial velocity distributions and the frictional pressure drop are studied. Where comparison is possible, very good agreement is found between current numerical results and published asymptotic and numerical results. For shear thinning materials in long thin cavities in the tangential flow dominated flow regime, the numerical results show that the frictional pressure drop lies between two extreme conditions, namely the results for duct flow and analytical results from lubrication theory. For shear thinning materials in a lid-driven cavity, the interaction between the tangential flow and axial flow is very complex because the flow is dependent on the flow Reynolds numbers and the ratio of the average axial velocity and the lid velocity. For both Newtonian and shear thinning fluids, the axial velocity peak is shifted and the frictional pressure drop is increased with increasing tangential flow Reynolds number. The results are highly relevant to industrial devices such as screw extruders and scraped surface heat exchangers. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Elevated levels of low-density-lipoprotein cholesterol (LDL-C) in the plasma are a well-established risk factor for the development of coronary heart disease. Plasma LDL-C levels are in part determined by the rate at which LDL particles are removed from the bloodstream by hepatic uptake. The uptake of LDL by mammalian liver cells occurs mainly via receptor-mediated endocytosis, a process which entails the binding of these particles to specific receptors in specialised areas of the cell surface, the subsequent internalization of the receptor-lipoprotein complex, and ultimately the degradation and release of the ingested lipoproteins' constituent parts. We formulate a mathematical model to study the binding and internalization (endocytosis) of LDL and VLDL particles by hepatocytes in culture. The system of ordinary differential equations, which includes a cholesterol-dependent pit production term representing feedback regulation of surface receptors in response to intracellular cholesterol levels, is analysed using numerical simulations and steady-state analysis. Our numerical results show good agreement with in vitro experimental data describing LDL uptake by cultured hepatocytes following delivery of a single bolus of lipoprotein. Our model is adapted in order to reflect the in vivo situation, in which lipoproteins are continuously delivered to the hepatocyte. In this case, our model suggests that the competition between the LDL and VLDL particles for binding to the pits on the cell surface affects the intracellular cholesterol concentration. In particular, we predict that when there is continuous delivery of low levels of lipoproteins to the cell surface, more VLDL than LDL occupies the pit, since VLDL are better competitors for receptor binding. VLDL have a cholesterol content comparable to LDL particles; however, due to the larger size of VLDL, one pit-bound VLDL particle blocks binding of several LDLs, and there is a resultant drop in the intracellular cholesterol level. When there is continuous delivery of lipoprotein at high levels to the hepatocytes, VLDL particles still out-compete LDL particles for receptor binding, and consequently more VLDL than LDL particles occupy the pit. Although the maximum intracellular cholesterol level is similar for high and low levels of lipoprotein delivery, the maximum is reached more rapidly when the lipoprotein delivery rates are high. The implications of these results for the design of in vitro experiments is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel sparse kernel density estimator is derived based on a regression approach, which selects a very small subset of significant kernels by means of the D-optimality experimental design criterion using an orthogonal forward selection procedure. The weights of the resulting sparse kernel model are calculated using the multiplicative nonnegative quadratic programming algorithm. The proposed method is computationally attractive, in comparison with many existing kernel density estimation algorithms. Our numerical results also show that the proposed method compares favourably with other existing methods, in terms of both test accuracy and model sparsity, for constructing kernel density estimates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this paper is to study the impact of channel state information on the design of cooperative transmission protocols. This is motivated by the fact that the performance gain achieved by cooperative diversity comes at the price of the extra bandwidth resource consumption. Several opportunistic relaying strategies are developed to fully utilize the different types of a priori channel information. The information-theoretic measures such as outage probability and diversity-multiplexing tradeoff are developed for the proposed protocols. The analytical and numerical results demonstrate that the use of such a priori information increases the spectral efficiency of cooperative diversity, especially at low signal-to-noise ratio.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Splitting techniques are commonly used when large-scale models, which appear in different fields of science and engineering, are treated numerically. Four types of splitting procedures are defined and discussed. The problem of the choice of a splitting procedure is investigated. Several numerical tests, by which the influence of the splitting errors on the accuracy of the results is studied, are given. It is shown that the splitting errors decrease linearly when (1) the splitting procedure is of first order and (2) the splitting errors are dominant. Three examples for splitting procedures used in all large-scale air pollution models are presented. Numerical results obtained by a particular air pollution model, Unified Danish Eulerian Model (UNI-DEM), are given and analysed.