83 resultados para Numerical Simulations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We make a qualitative and quantitative comparison of numericalsimulations of the ashcloud generated by the eruption of Eyjafjallajökull in April2010 with ground-basedlidar measurements at Exeter and Cardington in southern England. The numericalsimulations are performed using the Met Office’s dispersion model, NAME (Numerical Atmospheric-dispersion Modelling Environment). The results show that NAME captures many of the features of the observed ashcloud. The comparison enables us to estimate the fraction of material which survives the near-source fallout processes and enters into the distal plume. A number of simulations are performed which show that both the structure of the ashcloudover southern England and the concentration of ash within it are particularly sensitive to the height of the eruption column (and the consequent estimated mass emission rate), to the shape of the vertical source profile and the level of prescribed ‘turbulent diffusion’ (representing the mixing by the unresolved eddies) in the free troposphere with less sensitivity to the timing of the start of the eruption and the sedimentation of particulates in the distal plume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high resolution general circulation model has been used to study intense tropical storms. A five-year-long global integration with a spatial resolution of 125 km has been analysed. The geographical and seasonal distribution of tropical storms agrees remarkably well with observations. The structure of individual storms also agrees with observations, but the storms are generally more extensive in coverage and less extreme than the observed ones. A few additional calculations have also been done by a very high resolution limited-area version of the same model, where the boundary conditions successively have been interpolated from the global model. These results are very realistic in many details of the structure of the storms including simulated rain-bands and an eye structure. The global model has also been used in another five-year integration to study the influence of greenhouse warming. The sea surface temperatures have been taken from a transient climate change experiment carried out with a low resolution coupled ocean-atmosphere model. The result is a significant reduction in the number of hurricanes, particularly in the Southern Hemisphere. Main reasons for this can be found in changes in the largescale circulation, i.e. a weakening of the Hadley circulation, and a more intense warming of the upper tropical troposphere. A similar effect can be seen during warm ENSO events, where fewer North Atlantic hurricanes have been reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The parameterisation of diabatic processes in numerical models is critical for the accuracy of weather forecasts and for climate projections. A novel approach to the evaluation of these processes in models is introduced in this contribution. The approach combines a suite of on-line tracer diagnostics with off-line trajectory calculations. Each tracer tracks accumulative changes in potential temperature associated with a particular parameterised diabatic process in the model. A comparison of tracers therefore allows the identification of the most active diabatic processes and their downstream impacts. The tracers are combined with trajectories computed using model-resolved winds, allowing the various diabatic contributions to be tracked back to their time and location of occurrence. We have used this approach to investigate diabatic processes within a simulated extratropical cyclone. We focus on the warm conveyor belt, in which the dominant diabatic contributions come from large-scale latent heating and parameterised convection. By contrasting two simulations, one with standard convection parameterisation settings and another with reduced parameterised convection, the effects of parameterised convection on the structure of the cyclone have been determined. Under reduced parameterised convection conditions, the large-scale latent heating is forced to release convective instability that would otherwise have been released by the convection parameterisation. Although the spatial distribution of precipitation depends on the details of the split between parameterised convection and large-scale latent heating, the total precipitation amount associated with the cyclone remains largely unchanged. For reduced parameterised convection, a more rapid and stronger latent heating episode takes place as air ascends within the warm conveyor belt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sea ice export from the Arctic is of global importance due to its fresh water which influences the oceanic stratification and, thus, the global thermohaline circulation. This study deals with the effect of cyclones on sea ice and sea ice transport in particular on the basis of observations from two field experiments FRAMZY 1999 and FRAMZY 2002 in April 1999 and March 2002 as well as on the basis of simulations with a numerical sea ice model. The simulations realised by a dynamic-thermodynamic sea ice model are forced with 6-hourly atmospheric ECMWF- analyses (European Centre for Medium-Range Weather Forecasts) and 6-hourly oceanic data of a MPI-OM-simulation (Max-Planck-Institute Ocean Model). Comparing the observed and simulated variability of the sea ice drift and of the position of the ice edge shows that the chosen configuration of the model is appropriate for the performed studies. The seven observed cyclones change the position of the ice edge up to 100 km and cause an extensive decrease of sea ice coverage by 2 % up to more than 10 %. The decrease is only simulated by the model if the ocean current is strongly divergent in the centre of the cyclone. The impact is remarkable of the ocean current on divergence and shear deformation of the ice drift. As shown by sensitivity studies the ocean current at a depth of 6 m – the sea ice model is forced with – is mainly responsible for the ascertained differences between simulation and observation. The simulated sea ice transport shows a strong variability on a time scale from hours to days. Local minima occur in the time series of the ice transport during periods with Fram Strait cyclones. These minima are not caused by the local effect of the cyclone’s wind field, but mainly by the large-scale pattern of surface pressure. A displacement of the areas of strongest cyclone activity in the Nordic Seas would considerably influence the ice transport.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Results from both experimental measurements and 3D numerical simulations of Ground Source Heat Pump systems (GSHP) at a UK climate are presented. Experimental measurements of a horizontal-coupled slinky GSHP were undertaken in Talbot Cottage at Drayton St Leonard site, Oxfordshire, UK. The measured thermophysical properties of in situ soil were used in the CFD model. The thermal performance of slinky heat exchangers for the horizontal-coupled GSHP system for different coil diameters and slinky interval distances was investigated using a validated 3D model. Results from a two month period of monitoring the performance of the GSHP system showed that the COP decreased with the running time. The average COP of the horizontal-coupled GSHP was 2.5. The numerical prediction showed that there was no significant difference in the specific heat extraction of the slinky heat exchanger at different coil diameters. However, the larger the diameter of coil, the higher the heat extraction per meter length of soil. The specific heat extraction also increased, but the heat extraction per meter length of soil decreased with the increase of coil central interval distance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cloud-resolving numerical simulations of airflow over a diurnally heated mountain ridge are conducted to explore the mechanisms and sensitivities of convective initiation under high pressure conditions. The simulations are based on a well-observed convection event from the Convective and Orographically Induced Precipitation Study (COPS) during summer 2007, where an isolated afternoon thunderstorm developed over the Black Forest mountains of central Europe, but they are idealized to facilitate understanding and reduce computational expense. In the conditionally unstable but strongly inhibited flow under consideration, sharp horizontal convergence over the mountain acts to locally weaken the inhibition and moisten the dry midtroposphere through shallow cumulus detrainment. The onset of deep convection occurs not through the deep ascent of a single updraft but rather through a rapid succession of thermals that are vented through the mountain convergence zone into the deepening cloud mass. Emerging thermals rise through the saturated wakes of their predecessors, which diminishes the suppressive effects of entrainment and allows for rapid glaciation above the freezing level as supercooled cloud drops rime onto preexisting ice particles. These effects strongly enhance the midlevel cloud buoyancy and enable rapid ascent to the tropopause. The existence and vigor of the convection is highly sensitive to small changes in background wind speed U0, which controls the strength of the mountain convergence and the ability of midlevel moisture to accumulate above the mountain. Whereas vigorous deep convection develops for U0 = 0 m s−1, deep convection is completely eliminated for U0 = 3 m s−1. Although deep convection is able to develop under intermediate winds (U0 = 1.5 m s−1), its formation is highly sensitive to small-amplitude perturbations in the initial flow.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chongqing is the largest central-government-controlled municipality in China, which is now under going a rapid urbanization. The question remains open: What are the consequences of such rapid urbanization in Chongqing in terms of urban microclimates? An integrated study comprising three different research approaches is adopted in the present paper. By analyzing the observed annual climate data, an average rising trend of 0.10◦C/decade was found for the annual mean temperature from 1951 to 2010 in Chongqing,indicating a higher degree of urban warming in Chongqing. In addition, two complementary types of field measurements were conducted: fixed weather stations and mobile transverse measurement. Numerical simulations using a house-developed program are able to predict the urban air temperature in Chongqing.The urban heat island intensity in Chongqing is stronger in summer compared to autumn and winter.The maximum urban heat island intensity occurs at around midnight, and can be as high as 2.5◦C. In the day time, an urban cool island exists. Local greenery has a great impact on the local thermal environment.Urban green spaces can reduce urban air temperature and therefore mitigate the urban heat island. The cooling effect of an urban river is limited in Chongqing, as both sides of the river are the most developed areas, but the relative humidity is much higher near the river compared with the places far from it.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider the small-time behavior of interfaces of zero contact angle solutions to the thin-film equation. For a certain class of initial data, through asymptotic analyses, we deduce a wide variety of behavior for the free boundary point. These are supported by extensive numerical simulations. © 2007 Society for Industrial and Applied Mathematics

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Turbulence statistics obtained by direct numerical simulations are analysed to investigate spatial heterogeneity within regular arrays of building-like cubical obstacles. Two different array layouts are studied, staggered and square, both at a packing density of λp=0.25 . The flow statistics analysed are mean streamwise velocity ( u− ), shear stress ( u′w′−−−− ), turbulent kinetic energy (k) and dispersive stress fraction ( u˜w˜ ). The spatial flow patterns and spatial distribution of these statistics in the two arrays are found to be very different. Local regions of high spatial variability are identified. The overall spatial variances of the statistics are shown to be generally very significant in comparison with their spatial averages within the arrays. Above the arrays the spatial variances as well as dispersive stresses decay rapidly to zero. The heterogeneity is explored further by separately considering six different flow regimes identified within the arrays, described here as: channelling region, constricted region, intersection region, building wake region, canyon region and front-recirculation region. It is found that the flow in the first three regions is relatively homogeneous, but that spatial variances in the latter three regions are large, especially in the building wake and canyon regions. The implication is that, in general, the flow immediately behind (and, to a lesser extent, in front of) a building is much more heterogeneous than elsewhere, even in the relatively dense arrays considered here. Most of the dispersive stress is concentrated in these regions. Considering the experimental difficulties of obtaining enough point measurements to form a representative spatial average, the error incurred by degrading the sampling resolution is investigated. It is found that a good estimate for both area and line averages can be obtained using a relatively small number of strategically located sampling points.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe numerical simulations designed to elucidate the role of mean ocean salinity in climate. Using a coupled atmosphere-ocean general circulation model, we study a 100-year sensitivity experiment in which the global-mean salinity is approximately doubled from its present observed value, by adding 35 psu everywhere in the ocean. The salinity increase produces a rapid global-mean sea-surface warming of C within a few years, caused by reduced vertical mixing associated with changes in cabbeling. The warming is followed by a gradual global-mean sea-surface cooling of C within a few decades, caused by an increase in the vertical (downward) component of the isopycnal diffusive heat flux. We find no evidence of impacts on the variability of the thermohaline circulation (THC) or El Niño/Southern Oscillation (ENSO). The mean strength of the Atlantic meridional overturning is reduced by 20% and the North Atlantic Deep Water penetrates less deeply. Nevertheless, our results dispute claims that higher salinities for the world ocean have profound consequences for the thermohaline circulation. In additional experiments with doubled atmospheric carbon dioxide, we find that the amplitude and spatial pattern of the global warming signal are modified in the hypersaline ocean. In particular, the equilibrated global-mean sea-surface temperature increase caused by doubling carbon dioxide is reduced by 10%. We infer the existence of a non-linear interaction between the climate responses to modified carbon dioxide and modified salinity.