74 resultados para Numerical Model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estimating the magnitude of Agulhas leakage, the volume flux of water from the Indian to the Atlantic Ocean, is difficult because of the presence of other circulation systems in the Agulhas region. Indian Ocean water in the Atlantic Ocean is vigorously mixed and diluted in the Cape Basin. Eulerian integration methods, where the velocity field perpendicular to a section is integrated to yield a flux, have to be calibrated so that only the flux by Agulhas leakage is sampled. Two Eulerian methods for estimating the magnitude of Agulhas leakage are tested within a high-resolution two-way nested model with the goal to devise a mooring-based measurement strategy. At the GoodHope line, a section halfway through the Cape Basin, the integrated velocity perpendicular to that line is compared to the magnitude of Agulhas leakage as determined from the transport carried by numerical Lagrangian floats. In the first method, integration is limited to the flux of water warmer and more saline than specific threshold values. These threshold values are determined by maximizing the correlation with the float-determined time series. By using the threshold values, approximately half of the leakage can directly be measured. The total amount of Agulhas leakage can be estimated using a linear regression, within a 90% confidence band of 12 Sv. In the second method, a subregion of the GoodHope line is sought so that integration over that subregion yields an Eulerian flux as close to the float-determined leakage as possible. It appears that when integration is limited within the model to the upper 300 m of the water column within 900 km of the African coast the time series have the smallest root-mean-square difference. This method yields a root-mean-square error of only 5.2 Sv but the 90% confidence band of the estimate is 20 Sv. It is concluded that the optimum thermohaline threshold method leads to more accurate estimates even though the directly measured transport is a factor of two lower than the actual magnitude of Agulhas leakage in this model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a numerical implementation of the Cowley and Lockwood (1992) model of flow excitation in the magnetosphere–ionosphere (MI) system, we show that both an expanding (on a _12-min timescale) and a quasiinstantaneous response in ionospheric convection to the onset of magnetopause reconnection can be accommodated by the Cowley–Lockwood conceptual framework. This model has a key feature of time dependence, necessarily considering the history of the coupled MI system. We show that a residual flow, driven by prior magnetopause reconnection, can produce a quasi-instantaneous global ionospheric convection response; perturbations from an equilibrium state may also be present from tail reconnection, which will superpose constructively to give a similar effect. On the other hand, when the MI system is relatively free of pre-existing flow, we can most clearly see the expanding nature of the response. As the open-closed field line boundary will frequently be in motion from such prior reconnection (both at the dayside magnetopause and in the cross-tail current sheet), it is expected that there will usually be some level of combined response to dayside reconnection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical model embodying the concepts of the Cowley-Lockwood (Cowley and Lockwood, 1992, 1997) paradigm has been used to produce a simple Cowley– Lockwood type expanding flow pattern and to calculate the resulting change in ion temperature. Cross-correlation, fixed threshold analysis and threshold relative to peak are used to determine the phase speed of the change in convection pattern, in response to a change in applied reconnection. Each of these methods fails to fully recover the expansion of the onset of the convection response that is inherent in the simulations. The results of this study indicate that any expansion of the convection pattern will be best observed in time-series data using a threshold which is a fixed fraction of the peak response. We show that these methods used to determine the expansion velocity can be used to discriminate between the two main models for the convection response to a change in reconnection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a numerical model for predicting the evolution of the pattern of ionospheric convection in response to general time-dependent magnetic reconnection at the dayside magnetopause and in the cross-tail current sheet of the geomagnetic tail. The model quantifies the concepts of ionospheric flow excitation by Cowley and Lockwood (1992), assuming a uniform spatial distribution of ionospheric conductivity. The model is demonstrated using an example in which travelling reconnection pulses commence near noon and then move across the dayside magnetopause towards both dawn and dusk. Two such pulses, 8 min apart, are used and each causes the reconnection to be active for 1 min at every MLT that they pass over. This example demonstrates how the convection response to a given change in the interplanetary magnetic field (via the reconnection rate) depends on the previous reconnection history. The causes of this effect are explained. The inherent assumptions and the potential applications of the model are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This article describes a novel algorithmic development extending the contour advective semi-Lagrangian model to include nonconservative effects. The Lagrangian contour representation of finescale tracer fields, such as potential vorticity, allows for conservative, nondiffusive treatment of sharp gradients allowing very high numerical Reynolds numbers. It has been widely employed in accurate geostrophic turbulence and tracer advection simulations. In the present, diabatic version of the model the constraint of conservative dynamics is overcome by including a parallel Eulerian field that absorbs the nonconservative ( diabatic) tendencies. The diabatic buildup in this Eulerian field is limited through regular, controlled transfers of this field to the contour representation. This transfer is done with a fast newly developed contouring algorithm. This model has been implemented for several idealized geometries. In this paper a single-layer doubly periodic geometry is used to demonstrate the validity of the model. The present model converges faster than the analogous semi-Lagrangian models at increased resolutions. At the same nominal spatial resolution the new model is 40 times faster than the analogous semi-Lagrangian model. Results of an orographically forced idealized storm track show nontrivial dependency of storm-track statistics on resolution and on the numerical model employed. If this result is more generally applicable, this may have important consequences for future high-resolution climate modeling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report on a numerical study of the impact of short, fast inertia-gravity waves on the large-scale, slowly-evolving flow with which they co-exist. A nonlinear quasi-geostrophic numerical model of a stratified shear flow is used to simulate, at reasonably high resolution, the evolution of a large-scale mode which grows due to baroclinic instability and equilibrates at finite amplitude. Ageostrophic inertia-gravity modes are filtered out of the model by construction, but their effects on the balanced flow are incorporated using a simple stochastic parameterization of the potential vorticity anomalies which they induce. The model simulates a rotating, two-layer annulus laboratory experiment, in which we recently observed systematic inertia-gravity wave generation by an evolving, large-scale flow. We find that the impact of the small-amplitude stochastic contribution to the potential vorticity tendency, on the model balanced flow, is generally small, as expected. In certain circumstances, however, the parameterized fast waves can exert a dominant influence. In a flow which is baroclinically-unstable to a range of zonal wavenumbers, and in which there is a close match between the growth rates of the multiple modes, the stochastic waves can strongly affect wavenumber selection. This is illustrated by a flow in which the parameterized fast modes dramatically re-partition the probability-density function for equilibrated large-scale zonal wavenumber. In a second case study, the stochastic perturbations are shown to force spontaneous wavenumber transitions in the large-scale flow, which do not occur in their absence. These phenomena are due to a stochastic resonance effect. They add to the evidence that deterministic parameterizations in general circulation models, of subgrid-scale processes such as gravity wave drag, cannot always adequately capture the full details of the nonlinear interaction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. The model uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Results from the first Sun-to-Earth coupled numerical model developed at the Center for Integrated Space Weather Modeling are presented. The model simulates physical processes occurring in space spanning from the corona of the Sun to the Earth's ionosphere, and it represents the first step toward creating a physics-based numerical tool for predicting space weather conditions in the near-Earth environment. Two 6- to 7-d intervals, representing different heliospheric conditions in terms of the three-dimensional configuration of the heliospheric current sheet, are chosen for simulations. These conditions lead to drastically different responses of the simulated magnetosphere-ionosphere system, emphasizing, on the one hand, challenges one encounters in building such forecasting tools, and on the other hand, emphasizing successes that can already be achieved even at this initial stage of Sun-to-Earth modeling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A simple theoretical model for the intensification of tropical cyclones and polar lows is developed using a minimal set of physical assumptions. These disturbances are assumed to be balanced systems intensifying through the WISHE (Wind-Induced Surface Heat Exchange) intensification mechanism, driven by surface fluxes of heat and moisture into an atmosphere which is neutral to moist convection. The equation set is linearized about a resting basic state and solved as an initial-value problem. A system is predicted to intensify with an exponential perturbation growth rate scaled by the radial gradient of an efficiency parameter which crudely represents the effects of unsaturated processes. The form of this efficiency parameter is assumed to be defined by initial conditions, dependent on the nature of a pre-existing vortex required to precondition the atmosphere to a state in which the vortex can intensify. Evaluation of the simple model using a primitive-equation, nonlinear numerical model provides support for the prediction of exponential perturbation growth. Good agreement is found between the simple and numerical models for the sensitivities of the measured growth rate to various parameters, including surface roughness, the rate of transfer of heat and moisture from the ocean surface, and the scale for the growing vortex.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Strong vertical gradients at the top of the atmospheric boundary layer affect the propagation of electromagnetic waves and can produce radar ducts. A three-dimensional, time-dependent, nonhydrostatic numerical model was used to simulate the propagation environment in the atmosphere over the Persian Gulf when aircraft observations of ducting had been made. A division of the observations into high- and low-wind cases was used as a framework for the simulations. Three sets of simulations were conducted with initial conditions of varying degrees of idealization and were compared with the observations taken in the Ship Antisubmarine Warfare Readiness/Effectiveness Measuring (SHAREM-115) program. The best results occurred with the initialization based on a sounding taken over the coast modified by the inclusion of data on low-level atmospheric conditions over the Gulf waters. The development of moist, cool, stable marine internal boundary layers (MIBL) in air flowing from land over the waters of the Gulf was simulated. The MIBLs were capped by temperature inversions and associated lapses of humidity and refractivity. The low-wind MIBL was shallower and the gradients at its top were sharper than in the high-wind case, in agreement with the observations. Because it is also forced by land–sea contrasts, a sea-breeze circulation frequently occurs in association with the MIBL. The size, location, and internal structure of the sea-breeze circulation were realistically simulated. The gradients of temperature and humidity that bound the MIBL cause perturbations in the refractivity distribution that, in turn, lead to trapping layers and ducts. The existence, location, and surface character of the ducts were well captured. Horizontal variations in duct characteristics due to the sea-breeze circulation were also evident. The simulations successfully distinguished between high- and low-wind occasions, a notable feature of the SHAREM-115 observations. The modeled magnitudes of duct depth and strength, although leaving scope for improvement, were most encouraging.