26 resultados para Nonlinear Schrödinger Equation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new spectral method for solving initial boundary value problems for linear and integrable nonlinear partial differential equations in two independent variables is applied to the nonlinear Schrödinger equation and to its linearized version in the domain {x≥l(t), t≥0}. We show that there exist two cases: (a) if l″(t)<0, then the solution of the linear or nonlinear equations can be obtained by solving the respective scalar or matrix Riemann-Hilbert problem, which is defined on a time-dependent contour; (b) if l″(t)>0, then the Riemann-Hilbert problem is replaced by a respective scalar or matrix problem on a time-independent domain. In both cases, the solution is expressed in a spectrally decomposed form.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the implementation of a method of solving initial boundary value problems in the case of integrable evolution equations in a time-dependent domain. This method is applied to a dispersive linear evolution equation with spatial derivatives of arbitrary order and to the defocusing nonlinear Schrödinger equation, in the domain l(t)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We discuss the time evolution of the wave function which is the solution of a stochastic Schrödinger equation describing the dynamics of a free quantum particle subject to spontaneous localizations in space. We prove global existence and uniqueness of solutions. We observe that there exist three time regimes: the collapse regime, the classical regime and the diffusive regime. Concerning the latter, we assert that the general solution converges almost surely to a diffusing Gaussian wave function having a finite spread both in position as well as in momentum. This paper corrects and completes earlier works on this issue.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider a scattering problem for a nonlinear disordered lattice layer governed by the discrete nonlinear Schrodinger equation. The linear state with exponentially small transparency, due to the Anderson localization, is followed for an increasing nonlinearity, until it is destroyed via a bifurcation. The critical nonlinearity is shown to decay with the lattice length as a power law. We demonstrate that in the chaotic regimes beyond the bifurcation the field is delocalized and this leads to a drastic increase of transparency. Copyright (C) EPLA, 2008

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neural field models describe the coarse-grained activity of populations of interacting neurons. Because of the laminar structure of real cortical tissue they are often studied in two spatial dimensions, where they are well known to generate rich patterns of spatiotemporal activity. Such patterns have been interpreted in a variety of contexts ranging from the understanding of visual hallucinations to the generation of electroencephalographic signals. Typical patterns include localized solutions in the form of traveling spots, as well as intricate labyrinthine structures. These patterns are naturally defined by the interface between low and high states of neural activity. Here we derive the equations of motion for such interfaces and show, for a Heaviside firing rate, that the normal velocity of an interface is given in terms of a non-local Biot-Savart type interaction over the boundaries of the high activity regions. This exact, but dimensionally reduced, system of equations is solved numerically and shown to be in excellent agreement with the full nonlinear integral equation defining the neural field. We develop a linear stability analysis for the interface dynamics that allows us to understand the mechanisms of pattern formation that arise from instabilities of spots, rings, stripes and fronts. We further show how to analyze neural field models with linear adaptation currents, and determine the conditions for the dynamic instability of spots that can give rise to breathers and traveling waves.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

he classical problem of the response of a balanced, axisymmetric vortex to thermal and mechanical forcing is re-examined, paying special attention to the lower boundary condition. The correct condition is DΦ/Dt = 0, where Φ is the geopotential and D/Dt the material derivative, which explicitly accounts for a mass redistribution as part of the mean-flow response. This redistribution is neglected when using the boundary condition Dp/Dt = 0, which has conventionally been applied in this problem. It is shown that applying the incorrect boundary condition, and thereby ignoring the surface pressure change, leads to a zonal wind acceleration δū/δt that is too strong, especially near the surface. The effect is significant for planetary-scale forcing even when applied at tropopause level. A comparison is made between the mean-flow evolution in a baroclinic life-cycle, as simulated in a fully nonlinear, primitive-equation model, and that predicted by using the simulated eddy fluxes in the zonally-symmetric response problem. Use of the correct lower boundary condition is shown to lead to improved agreement.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider a finite element approximation of the sixth order nonlinear degenerate parabolic equation ut = ?.( b(u)? 2u), where generically b(u) := |u|? for any given ? ? (0,?). In addition to showing well-posedness of our approximation, we prove convergence in space dimensions d ? 3. Furthermore an iterative scheme for solving the resulting nonlinear discrete system is analysed. Finally some numerical experiments in one and two space dimensions are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel iterative procedure is described for solving nonlinear optimal control problems subject to differential algebraic equations. The procedure iterates on an integrated modified linear quadratic model based problem with parameter updating in such a manner that the correct solution of the original non-linear problem is achieved. The resulting algorithm has a particular advantage in that the solution is achieved without the need to solve the differential algebraic equations . Convergence aspects are discussed and a simulation example is described which illustrates the performance of the technique. 1. Introduction When modelling industrial processes often the resulting equations consist of coupled differential and algebraic equations (DAEs). In many situations these equations are nonlinear and cannot readily be directly reduced to ordinary differential equations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, the concept of available potential energy (APE) density is extended to a multicomponent Boussinesq fluid with a nonlinear equation of state. As shown by previous studies, the APE density is naturally interpreted as the work against buoyancy forces that a parcel needs to perform to move from a notional reference position at which its buoyancy vanishes to its actual position; because buoyancy can be defined relative to an arbitrary reference state, so can APE density. The concept of APE density is therefore best viewed as defining a class of locally defined energy quantities, each tied to a different reference state, rather than as a single energy variable. An important result, for which a new proof is given, is that the volume integrated APE density always exceeds Lorenz’s globally defined APE, except when the reference state coincides with Lorenz’s adiabatically re-arranged reference state of minimum potential energy. A parcel reference position is systematically defined as a level of neutral buoyancy (LNB): depending on the nature of the fluid and on how the reference state is defined, a parcel may have one, none, or multiple LNB within the fluid. Multiple LNB are only possible for a multicomponent fluid whose density depends on pressure. When no LNB exists within the fluid, a parcel reference position is assigned at the minimum or maximum geopotential height. The class of APE densities thus defined admits local and global balance equations, which all exhibit a conversion with kinetic energy, a production term by boundary buoyancy fluxes, and a dissipation term by internal diffusive effects. Different reference states alter the partition between APE production and dissipation, but neither affect the net conversion between kinetic energy and APE, nor the difference between APE production and dissipation. We argue that the possibility of constructing APE-like budgets based on reference states other than Lorenz’s reference state is more important than has been previously assumed, and we illustrate the feasibility of doing so in the context of an idealised and realistic oceanic example, using as reference states one with constant density and another one defined as the horizontal mean density field; in the latter case, the resulting APE density is found to be a reasonable approximation of the APE density constructed from Lorenz’s reference state, while being computationally cheaper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we summarise this recent progress to underline the features specific to this nonlinear elliptic case, and we give a new classification of boundary conditions on the semistrip that satisfy a necessary condition for yielding a boundary value problem can be effectively linearised. This classification is based on formulation the equation in terms of an alternative Lax pair.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study of the mechanical energy budget of the oceans using Lorenz available potential energy (APE) theory is based on knowledge of the adiabatically re-arranged Lorenz reference state of minimum potential energy. The compressible and nonlinear character of the equation of state for seawater has been thought to cause the reference state to be ill-defined, casting doubt on the usefulness of APE theory for investigating ocean energetics under realistic conditions. Using a method based on the volume frequency distribution of parcels as a function of temperature and salinity in the context of the seawater Boussinesq approximation, which we illustrate using climatological data, we show that compressibility effects are in fact minor. The reference state can be regarded as a well defined one-dimensional function of depth, which forms a surface in temperature, salinity and density space between the surface and the bottom of the ocean. For a very small proportion of water masses, this surface can be multivalued and water parcels can have up to two statically stable levels in the reference density profile, of which the shallowest is energetically more accessible. Classifying parcels from the surface to the bottom gives a different reference density profile than classifying in the opposite direction. However, this difference is negligible. We show that the reference state obtained by standard sorting methods is equivalent, though computationally more expensive, to the volume frequency distribution approach. The approach we present can be applied systematically and in a computationally efficient manner to investigate the APE budget of the ocean circulation using models or climatological data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pairs of counter-propagating Rossby waves (CRWs) can be used to describe baroclinic instability in linearized primitive-equation dynamics, employing simple propagation and interaction mechanisms at only two locations in the meridional plane—the CRW ‘home-bases’. Here, it is shown how some CRW properties are remarkably robust as a growing baroclinic wave develops nonlinearly. For example, the phase difference between upper-level and lower-level waves in potential-vorticity contours, defined initially at the home-bases of the CRWs, remains almost constant throughout baroclinic wave life cycles, despite the occurrence of frontogenesis and Rossby-wave breaking. As the lower wave saturates nonlinearly the whole baroclinic wave changes phase speed from that of the normal mode to that of the self-induced phase speed of the upper CRW. On zonal jets without surface meridional shear, this must always act to slow the baroclinic wave. The direction of wave breaking when a basic state has surface meridional shear can be anticipated because the displacement structures of CRWs tend to be coherent along surfaces of constant basic-state angular velocity, U. This results in up-gradient horizontal momentum fluxes for baroclinically growing disturbances. The momentum flux acts to shift the jet meridionally in the direction of the increasing surface U, so that the upper CRW breaks in the same direction as occurred at low levels

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A scale-invariant moving finite element method is proposed for the adaptive solution of nonlinear partial differential equations. The mesh movement is based on a finite element discretisation of a scale-invariant conservation principle incorporating a monitor function, while the time discretisation of the resulting system of ordinary differential equations is carried out using a scale-invariant time-stepping which yields uniform local accuracy in time. The accuracy and reliability of the algorithm are successfully tested against exact self-similar solutions where available, and otherwise against a state-of-the-art h-refinement scheme for solutions of a two-dimensional porous medium equation problem with a moving boundary. The monitor functions used are the dependent variable and a monitor related to the surface area of the solution manifold. (c) 2005 IMACS. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador: