72 resultados para Non-Archimedean Real Closed Fields
Resumo:
Investment risk models with infinite variance provide a better description of distributions of individual property returns in the IPD UK database over the period 1981 to 2003 than normally distributed risk models. This finding mirrors results in the US and Australia using identical methodology. Real estate investment risk is heteroskedastic, but the characteristic exponent of the investment risk function is constant across time – yet it may vary by property type. Asset diversification is far less effective at reducing the impact of non‐systematic investment risk on real estate portfolios than in the case of assets with normally distributed investment risk. The results, therefore, indicate that multi‐risk factor portfolio allocation models based on measures of investment codependence from finite‐variance statistics are ineffective in the real estate context
Resumo:
Investment risk models with infinite variance provide a better description of distributions of individual property returns in the IPD database over the period 1981 to 2003 than Normally distributed risk models, which mirrors results in the U.S. and Australia using identical methodology. Real estate investment risk is heteroscedastic, but the Characteristic Exponent of the investment risk function is constant across time yet may vary by property type. Asset diversification is far less effective at reducing the impact of non-systematic investment risk on real estate portfolios than in the case of assets with Normally distributed investment risk. Multi-risk factor portfolio allocation models based on measures of investment codependence from finite-variance statistics are ineffectual in the real estate context.
Resumo:
The rapid growth of non-listed real estate funds over the last several years has contributed towards establishing this sector as a major investment vehicle for gaining exposure to commercial real estate. Academic research has not kept up with this development, however, as there are still only a few published studies on non-listed real estate funds. This paper aims to identify the factors driving the total return over a seven-year period. Influential factors tested in our analysis include the weighted underlying direct property returns in each country and sector as well as fund size, investment style gearing and the distribution yield. Furthermore, we analyze the interaction of non-listed real estate funds with the performance of the overall economy and that of competing asset classes and found that lagged GDP growth and stock market returns as well as contemporaneous government bond rates are significant and positive predictors of annual fund performance.
Resumo:
Drawing upon European industry and country case studies, this paper investigates the scope and drivers of cross-border real estate development. It is argued that the real estate development process encompasses a diverse range of activities and actors. It is inherently localised, the production process is complex and emphermal, and the outputs are heterogeneous. It analyses a transactions database of European real estate markets to provide insights into the extent of, and variations in, market penetration by non-domestic real estate developers. The data were consistent with the expectation that non-domestic real estate developers from mature markets would have a high level of market penetration in immature markets. Compared to western European markets, the CEE real estate office sales by developers were dominated by US, Israeli and other EU developers. This pattern is consistent with the argument that non-domestic developers have substantial Dunning-type ownership advantages when entering immature real estate markets. However, the data also suggested some unexpected patterns. Relative to their GDP, Austria, Belgium, Denmark, Sweden, Netherlands and Israel accounted for large proportions of sales by developers. All are EU countries (except Israel) with small, open, affluent, highly traded economies. Further, the data also indicate that there may be a threshold where locational disadvantages outweigh ownership advantages and deter cross-border real estate development.
Resumo:
We evaluate a number of real estate sentiment indices to ascertain current and forward-looking information content that may be useful for forecasting the demand and supply activities. Our focus lies on sector-specific surveys targeting the players from the supply-side of both residential and non-residential real estate markets. Analyzing the dynamic relationships within a Vector Auto-Regression (VAR) framework, we test the efficacy of these indices by comparing them with other coincident indicators in predicting real estate returns. Overall, our analysis suggests that sentiment indicators convey important information which should be embedded in the modeling exercise to predict real estate market returns. Generally, sentiment indices show better information content than broad economic indicators. The goodness of fit of our models is higher for the residential market than for the non-residential real estate sector. The impulse responses, in general, conform to our theoretical expectations. Variance decompositions and out-of-sample predictions generally show desired contribution and reasonable improvement respectively, thus upholding our hypothesis. Quite remarkably, consistent with the theory, the predictability swings when we look through different phases of the cycle. This perhaps suggests that, e.g. during recessions, market players’ expectations may be more accurate predictor of the future performances, conceivably indicating a ‘negative’ information processing bias and thus conforming to the precautionary motive of consumer behaviour.
Resumo:
Among existing remote sensing applications, land-based X-band radar is an effective technique to monitor the wave fields, and spatial wave information could be obtained from the radar images. Two-dimensional Fourier Transform (2-D FT) is the common algorithm to derive the spectra of radar images. However, the wave field in the nearshore area is highly non-homogeneous due to wave refraction, shoaling, and other coastal mechanisms. When applied in nearshore radar images, 2-D FT would lead to ambiguity of wave characteristics in wave number domain. In this article, we introduce two-dimensional Wavelet Transform (2-D WT) to capture the non-homogeneity of wave fields from nearshore radar images. The results show that wave number spectra by 2-D WT at six parallel space locations in the given image clearly present the shoaling of nearshore waves. Wave number of the peak wave energy is increasing along the inshore direction, and dominant direction of the spectra changes from South South West (SSW) to West South West (WSW). To verify the results of 2-D WT, wave shoaling in radar images is calculated based on dispersion relation. The theoretical calculation results agree with the results of 2-D WT on the whole. The encouraging performance of 2-D WT indicates its strong capability of revealing the non-homogeneity of wave fields in nearshore X-band radar images.
Resumo:
A recent area for investigation into the development of adaptable robot control is the use of living neuronal networks to control a mobile robot. The so-called Animat paradigm comprises a neuronal network (the ‘brain’) connected to an external embodiment (in this case a mobile robot), facilitating potentially robust, adaptable robot control and increased understanding of neural processes. Sensory input from the robot is provided to the neuronal network via stimulation on a number of electrodes embedded in a specialist Petri dish (Multi Electrode Array (MEA)); accurate control of this stimulation is vital. We present software tools allowing precise, near real-time control of electrical stimulation on MEAs, with fast switching between electrodes and the application of custom stimulus waveforms. These Linux-based tools are compatible with the widely used MEABench data acquisition system. Benefits include rapid stimulus modulation in response to neuronal activity (closed loop) and batch processing of stimulation protocols.
Resumo:
The brace notation, introduced by Allen and Csaszar (1993, J. chem. Phys., 98, 2983), provides a simple and compact way to deal with derivatives of arbitrary non-tensorial quantities. One of its main advantages is that it builds the permutational symmetry of the derivatives directly into the formalism. The brace notation is applied to formulate the general nth-order Cartesian derivatives of internal coordinates, and to provide closed forms for general, nth-order transformation equations of anharmonic force fields, expressed as Taylor series, from internal to Cartesian or normal coordinate spaces.
Resumo:
This paper describes a region-based algorithm for deriving a concise description of a first order optical flow field. The algorithm described achieves performance improvements over existing algorithms without compromising the accuracy of the flow field values calculated. These improvements are brought about by not computing the entire flow field between two consecutive images, but by considering only the flow vectors of a selected subset of the images. The algorithm is presented in the context of a project to balance a bipedal robot using visual information.
Resumo:
A flux-difference splitting method is presented for the inviscid terms of the compressible flow equations for chemical non-equilibrium gases
Resumo:
The effects of a non-uniform wind field along the path of a scintillometer are investigated. Theoretical spectra are calculated for a range of scenarios where the crosswind varies in space or time and compared to the ‘ideal’ spectrum based on a constant uniform crosswind. It is verified that the refractive-index structure parameter relation with the scintillometer signal remains valid and invariant for both spatially and temporally-varying crosswinds. However, the spectral shape may change significantly preventing accurate estimation of the crosswind speed from the peak of the frequency spectrum and retrieval of the structure parameter from the plateau of the power spectrum. On comparison with experimental data, non-uniform crosswind conditions could be responsible for previously unexplained features sometimes seen in observed spectra. By accounting for the distribution of crosswind, theoretical spectra can be generated that closely replicate the observations, leading to a better understanding of the measurements. Spatial variability of wind speeds should be expected for paths other than those that are parallel to the surface and over flat, homogenous areas, whilst fluctuations in time are important for all sites.
Resumo:
This paper examines the determinacy implications of forecast-based monetary policy rules that set the interest rate in response to expected future inflation in a Neo-Wicksellian model that incorporates real balance effects. We show that the presence of such effects in closed economies restricts the ability of the Taylor principle to prevent indeterminacy of the rational expectations equilibrium. The problem is exacerbated in open economies, particularly if the policy rule reacts to consumer-price, rather than domestic-price, inflation. However, determinacy can be restored in both closed and open economies with the addition of monetary policy inertia.
Resumo:
Satellite-based rainfall monitoring is widely used for climatological studies because of its full global coverage but it is also of great importance for operational purposes especially in areas such as Africa where there is a lack of ground-based rainfall data. Satellite rainfall estimates have enormous potential benefits as input to hydrological and agricultural models because of their real time availability, low cost and full spatial coverage. One issue that needs to be addressed is the uncertainty on these estimates. This is particularly important in assessing the likely errors on the output from non-linear models (rainfall-runoff or crop yield) which make use of the rainfall estimates, aggregated over an area, as input. Correct assessment of the uncertainty on the rainfall is non-trivial as it must take account of • the difference in spatial support of the satellite information and independent data used for calibration • uncertainties on the independent calibration data • the non-Gaussian distribution of rainfall amount • the spatial intermittency of rainfall • the spatial correlation of the rainfall field This paper describes a method for estimating the uncertainty on satellite-based rainfall values taking account of these factors. The method involves firstly a stochastic calibration which completely describes the probability of rainfall occurrence and the pdf of rainfall amount for a given satellite value, and secondly the generation of ensemble of rainfall fields based on the stochastic calibration but with the correct spatial correlation structure within each ensemble member. This is achieved by the use of geostatistical sequential simulation. The ensemble generated in this way may be used to estimate uncertainty at larger spatial scales. A case study of daily rainfall monitoring in the Gambia, west Africa for the purpose of crop yield forecasting is presented to illustrate the method.
Resumo:
The classical computer vision methods can only weakly emulate some of the multi-level parallelisms in signal processing and information sharing that takes place in different parts of the primates’ visual system thus enabling it to accomplish many diverse functions of visual perception. One of the main functions of the primates’ vision is to detect and recognise objects in natural scenes despite all the linear and non-linear variations of the objects and their environment. The superior performance of the primates’ visual system compared to what machine vision systems have been able to achieve to date, motivates scientists and researchers to further explore this area in pursuit of more efficient vision systems inspired by natural models. In this paper building blocks for a hierarchical efficient object recognition model are proposed. Incorporating the attention-based processing would lead to a system that will process the visual data in a non-linear way focusing only on the regions of interest and hence reducing the time to achieve real-time performance. Further, it is suggested to modify the visual cortex model for recognizing objects by adding non-linearities in the ventral path consistent with earlier discoveries as reported by researchers in the neuro-physiology of vision.
Resumo:
We describe a remote sensing method for measuring the internal interface height field in a rotating, two-layer annulus laboratory experiment. The method is non-invasive, avoiding the possibility of an interaction between the flow and the measurement device. The height fields retrieved are accurate and highly resolved in both space and time. The technique is based on a flow visualization method developed by previous workers, and relies upon the optical rotation properties of the working liquids. The previous methods returned only qualitative interface maps, however. In the present study, a technique is developed for deriving quantitative maps by calibrating height against the colour fields registered by a camera which views the flow from above. We use a layer-wise torque balance analysis to determine the equilibrium interface height field analytically, in order to derive the calibration curves. With the current system, viewing an annulus of outer radius 125 mm and depth 250 mm from a distance of 2 m, the inferred height fields have horizontal, vertical and temporal resolutions of up to 0.2 mm, 1 mm and 0.04 s, respectively.