249 resultados para NEURAL LOBE
Resumo:
Background Evidence suggests a reversal of the normal left-lateralised response to speech in schizophrenia. Aims To test the brain's response to emotional prosody in schizophrenia and bipolar disorder. Method BOLD contrast functional magnetic resonance imaging of subjects while they passively listened or attended to sentences that differed in emotional prosody Results Patients with schizophrenia exhibited normal right-lateralisation of the passive response to 'pure' emotional prosody and relative left-lateralisation of the response to unfiltered emotional prosody When attending to emotional prosody, patients with schizophrenia activated the left insula more than healthy controls. When listening passively, patients with bipolar disorder demonstrated less activation of the bilateral superior temporal gyri in response to pure emotional prosody, and greater activation of the left superior temporal gyrus in response to unfiltered emotional prosody In both passive experiments, the patient groups activated different lateral temporal lobe regions. Conclusions Patients with schizophrenia and bipolar disorder may display some left-lateralisation of the normal right-lateralised temporal lobe response to emotional prosody. Declaration of interest R.M. received a studentship from Neuraxis,, and funding from the Neuroscience and Psychiatry Unit, University of Manchester.
Resumo:
Prosody is an important feature of language, comprising intonation, loudness, and tempo. Emotional prosodic processing forms an integral part of our social interactions. The main aim of this study was to use bold contrast fMRI to clarify the normal functional neuroanatomy of emotional prosody, in passive and active contexts. Subjects performed six separate scanning studies, within which two different conditions were contrasted: (1) "pure" emotional prosody versus rest; (2) congruent emotional prosody versus 'neutral' sentences; (3) congruent emotional prosody versus rest; (4) incongruent emotional prosody versus rest; (5) congruent versus incongruent emotional prosody; and (6) an active experiment in which subjects were instructed to either attend to the emotion conveyed by semantic content or that conveyed by tone of voice. Data resulting from these contrasts were analysed using SPM99. Passive listening to emotional prosody consistently activated the lateral temporal lobe (superior and/or middle temporal gyri). This temporal lobe response was relatively right-lateralised with or without semantic information. Both the separate and direct comparisons of congruent and incongruent emotional prosody revealed that subjects used fewer brain regions to process incongruent emotional prosody than congruent. The neural response to attention to semantics, was left lateralised, and recruited an extensive network not activated by attention to emotional prosody. Attention to emotional prosody modulated the response to speech, and induced right-lateralised activity, including the middle temporal gyrus. In confirming the results of lesion and neuropsychological studies, the current study emphasises the importance of the right hemisphere in the processing of emotional prosody, specifically the lateral temporal lobes. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
We frequently encounter conflicting emotion cues. This study examined how the neural response to emotional prosody differed in the presence of congruent and incongruent lexico-semantic cues. Two hypotheses were assessed: (i) decoding emotional prosody with conflicting lexico-semantic cues would activate brain regions associated with cognitive conflict (anterior cingulate and dorsolateral prefrontal cortex) or (ii) the increased attentional load of incongruent cues would modulate the activity of regions that decode emotional prosody (right lateral temporal cortex). While the participants indicated the emotion conveyed by prosody, functional magnetic resonance imaging data were acquired on a 3T scanner using blood oxygenation level-dependent contrast. Using SPM5, the response to congruent cues was contrasted with that to emotional prosody alone, as was the response to incongruent lexico-semantic cues (for the 'cognitive conflict' hypothesis). The right lateral temporal lobe region of interest analyses examined modulation of activity in this brain region between these two contrasts (for the 'prosody cortex' hypothesis). Dorsolateral prefrontal and anterior cingulate cortex activity was not observed, and neither was attentional modulation of activity in right lateral temporal cortex activity. However, decoding emotional prosody with incongruent lexico-semantic cues was strongly associated with left inferior frontal gyrus activity. This specialist form of conflict is therefore not processed by the brain using the same neural resources as non-affective cognitive conflict and neither can it be handled by associated sensory cortex alone. The recruitment of inferior frontal cortex may indicate increased semantic processing demands but other contributory functions of this region should be explored.
Resumo:
A recent area for investigation into the development of adaptable robot control is the use of living neuronal networks to control a mobile robot. The so-called Animat paradigm comprises a neuronal network (the ‘brain’) connected to an external embodiment (in this case a mobile robot), facilitating potentially robust, adaptable robot control and increased understanding of neural processes. Sensory input from the robot is provided to the neuronal network via stimulation on a number of electrodes embedded in a specialist Petri dish (Multi Electrode Array (MEA)); accurate control of this stimulation is vital. We present software tools allowing precise, near real-time control of electrical stimulation on MEAs, with fast switching between electrodes and the application of custom stimulus waveforms. These Linux-based tools are compatible with the widely used MEABench data acquisition system. Benefits include rapid stimulus modulation in response to neuronal activity (closed loop) and batch processing of stimulation protocols.
Resumo:
Deep Brain Stimulator devices are becoming widely used for therapeutic benefits in movement disorders such as Parkinson's disease. Prolonging the battery life span of such devices could dramatically reduce the risks and accumulative costs associated with surgical replacement. This paper demonstrates how an artificial neural network can be trained using pre-processing frequency analysis of deep brain electrode recordings to detect the onset of tremor in Parkinsonian patients. Implementing this solution into an 'intelligent' neurostimulator device will remove the need for continuous stimulation currently used, and open up the possibility of demand-driven stimulation. Such a methodology could potentially decrease the power consumption of a deep brain pulse generator.
Resumo:
The response to painful stimulation depends not only on peripheral nociceptive input but also on the cognitive and affective context in which pain occurs. One contextual variable that affects the neural and behavioral response to nociceptive stimulation is the degree to which pain is perceived to be controllable. Previous studies indicate that perceived controllability affects pain tolerance, learning and motivation, and the ability to cope with intractable pain, suggesting that it has profound effects on neural pain processing. To date, however, no neuroimaging studies have assessed these effects. We manipulated the subjects' belief that they had control over a nociceptive stimulus, while the stimulus itself was held constant. Using functional magnetic resonance imaging, we found that pain that was perceived to be controllable resulted in attenuated activation in the three neural areas most consistently linked with pain processing: the anterior cingulate, insular, and secondary somatosensory cortices. This suggests that activation at these sites is modulated by cognitive variables, such as perceived controllability, and that pain imaging studies may therefore overestimate the degree to which these responses are stimulus driven and generalizable across cognitive contexts. [References: 28]
Resumo:
This paper proposes the deployment of a neural network computing environment on Active Networks. Active Networks are packet-switched computer networks in which packets can contain code fragments that are executed on the intermediate nodes. This feature allows the injection of small pieces of codes to deal with computer network problems directly into the network core, and the adoption of new computing techniques to solve networking problems. The goal of our project is the adoption of a distributed neural network for approaching tasks which are specific of the computer network environment. Dynamically reconfigurable neural networks are spread on an experimental wide area backbone of active nodes (ABone) to show the feasibility of the proposed approach.
Resumo:
The existence of endgame databases challenges us to extract higher-grade information and knowledge from their basic data content. Chess players, for example, would like simple and usable endgame theories if such holy grail exists: endgame experts would like to provide such insights and be inspired by computers to do so. Here, we investigate the use of artificial neural networks (NNs) to mine these databases and we report on a first use of NNs on KPK. The results encourage us to suggest further work on chess applications of neural networks and other data-mining techniques.
Resumo:
Real-time rainfall monitoring in Africa is of great practical importance for operational applications in hydrology and agriculture. Satellite data have been used in this context for many years because of the lack of surface observations. This paper describes an improved artificial neural network algorithm for operational applications. The algorithm combines numerical weather model information with the satellite data. Using this algorithm, daily rainfall estimates were derived for 4 yr of the Ethiopian and Zambian main rainy seasons and were compared with two other algorithms-a multiple linear regression making use of the same information as that of the neural network and a satellite-only method. All algorithms were validated against rain gauge data. Overall, the neural network performs best, but the extent to which it does so depends on the calibration/validation protocol. The advantages of the neural network are most evident when calibration data are numerous and close in space and time to the validation data. This result emphasizes the importance of a real-time calibration system.
Resumo:
It has been previously demonstrated that extensive activation in the dorsolateral temporal lobes associated with masking a speech target with a speech masker, consistent with the hypothesis that competition for central auditory processes is an important factor in informational masking. Here, masking from speech and two additional maskers derived from the original speech were investigated. One of these is spectrally rotated speech, which is unintelligible and has a similar (inverted) spectrotemporal profile to speech. The authors also controlled for the possibility of “glimpsing” of the target signal during modulated masking sounds by using speech-modulated noise as a masker in a baseline condition. Functional imaging results reveal that masking speech with speech leads to bilateral superior temporal gyrus (STG) activation relative to a speech-in-noise baseline, while masking speech with spectrally rotated speech leads solely to right STG activation relative to the baseline. This result is discussed in terms of hemispheric asymmetries for speech perception, and interpreted as showing that masking effects can arise through two parallel neural systems, in the left and right temporal lobes. This has implications for the competition for resources caused by speech and rotated speech maskers, and may illuminate some of the mechanisms involved in informational masking.
Resumo:
The 'self' is a complex multidimensional construct deeply embedded and in many ways defined by our relations with the social world. Individuals with autism are impaired in both self-referential and other-referential social cognitive processing. Atypical neural representation of the self may be a key to understanding the nature of such impairments. Using functional magnetic resonance imaging we scanned adult males with an autism spectrum condition and age and IQ-matched neurotypical males while they made reflective mentalizing or physical judgements about themselves or the British Queen. Neurotypical individuals preferentially recruit the middle cingulate cortex and ventromedial prefrontal cortex in response to self compared with other-referential processing. In autism, ventromedial prefrontal cortex responded equally to self and other, while middle cingulate cortex responded more to other-mentalizing than self-mentalizing. These atypical responses occur only in areas where self-information is preferentially processed and does not affect areas that preferentially respond to other-referential information. In autism, atypical neural self-representation was also apparent via reduced functional connectivity between ventromedial prefrontal cortex and areas associated with lower level embodied representations, such as ventral premotor and somatosensory cortex. Furthermore, the magnitude of neural self-other distinction in ventromedial prefrontal cortex was strongly related to the magnitude of early childhood social impairments in autism. Individuals whose ventromedial prefrontal cortex made the largest distinction between mentalizing about self and other were least socially impaired in early childhood, while those whose ventromedial prefrontal cortex made little to no distinction between mentalizing about self and other were the most socially impaired in early childhood. These observations reveal that the atypical organization of neural circuitry preferentially coding for self-information is a key mechanism at the heart of both self-referential and social impairments in autism.
Resumo:
Although many examples exist for shared neural representations of self and other, it is unknown how such shared representations interact with the rest of the brain. Furthermore, do high-level inference-based shared mentalizing representations interact with lower level embodied/simulation-based shared representations? We used functional neuroimaging (fMRI) and a functional connectivity approach to assess these questions during high-level inference-based mentalizing. Shared mentalizing representations in ventromedial prefrontal cortex, posterior cingulate/precuneus, and temporo-parietal junction (TPJ) all exhibited identical functional connectivity patterns during mentalizing of both self and other. Connectivity patterns were distributed across low-level embodied neural systems such as the frontal operculum/ventral premotor cortex, the anterior insula, the primary sensorimotor cortex, and the presupplementary motor area. These results demonstrate that identical neural circuits are implementing processes involved in mentalizing of both self and other and that the nature of such processes may be the integration of low-level embodied processes within higher level inference-based mentalizing.