40 resultados para Model-based


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model based vision allows use of prior knowledge of the shape and appearance of specific objects to be used in the interpretation of a visual scene; it provides a powerful and natural way to enforce the view consistency constraint. A model based vision system has been developed within ESPRIT VIEWS: P2152 which is able to classify and track moving objects (cars and other vehicles) in complex, cluttered traffic scenes. The fundamental basis of the method has been previously reported. This paper presents recent developments which have extended the scope of the system to include (i) multiple cameras, (ii) variable camera geometry, and (iii) articulated objects. All three enhancements have easily been accommodated within the original model-based approach

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the current state of work to simplify our previous model-based methods for visual tracking of vehicles for use in a real-time system intended to provide continuous monitoring and classification of traffic from a fixed camera on a busy multi-lane motorway. The main constraints of the system design were: (i) all low level processing to be carried out by low-cost auxiliary hardware, (ii) all 3-D reasoning to be carried out automatically off-line, at set-up time. The system developed uses three main stages: (i) pose and model hypothesis using 1-D templates, (ii) hypothesis tracking, and (iii) hypothesis verification, using 2-D templates. Stages (i) & (iii) have radically different computing performance and computational costs, and need to be carefully balanced for efficiency. Together, they provide an effective way to locate, track and classify vehicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of modeling solar energetic particle (SEP) events is important to both space weather research and forecasting, and yet it has seen relatively little progress. Most important SEP events are associated with coronal mass ejections (CMEs) that drive coronal and interplanetary shocks. These shocks can continuously produce accelerated particles from the ambient medium to well beyond 1 AU. This paper describes an effort to model real SEP events using a Center for Integrated Space weather Modeling (CISM) MHD solar wind simulation including a cone model of CMEs to initiate the related shocks. In addition to providing observation-inspired shock geometry and characteristics, this MHD simulation describes the time-dependent observer field line connections to the shock source. As a first approximation, we assume a shock jump-parameterized source strength and spectrum, and that scatter-free transport occurs outside of the shock source, thus emphasizing the role the shock evolution plays in determining the modeled SEP event profile. Three halo CME events on May 12, 1997, November 4, 1997 and December 13, 2006 are used to test the modeling approach. While challenges arise in the identification and characterization of the shocks in the MHD model results, this approach illustrates the importance to SEP event modeling of globally simulating the underlying heliospheric event. The results also suggest the potential utility of such a model for forcasting and for interpretation of separated multipoint measurements such as those expected from the STEREO mission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the quantification of the likely effect of anthropogenic climate change on the water resources of Jordan by the end of the twenty-first century. Specifically, a suite of hydrological models are used in conjunction with modelled outcomes from a regional climate model, HadRM3, and a weather generator to determine how future flows in the upper River Jordan and in the Wadi Faynan may change. The results indicate that groundwater will play an important role in the water security of the country as irrigation demands increase. Given future projections of reduced winter rainfall and increased near-surface air temperatures, the already low groundwater recharge will decrease further. Interestingly, the modelled discharge at the Wadi Faynan indicates that extreme flood flows will increase in magnitude, despite a decrease in the mean annual rainfall. Simulations projected no increase in flood magnitude in the upper River Jordan. Discussion focuses on the utility of the modelling framework, the problems of making quantitative forecasts and the implications of reduced water availability in Jordan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a fuzzy Markov random field (FMRF) model is used to segment land-objects into free, grass, building, and road regions by fusing remotely, sensed LIDAR data and co-registered color bands, i.e. scanned aerial color (RGB) photo and near infra-red (NIR) photo. An FMRF model is defined as a Markov random field (MRF) model in a fuzzy domain. Three optimization algorithms in the FMRF model, i.e. Lagrange multiplier (LM), iterated conditional mode (ICM), and simulated annealing (SA), are compared with respect to the computational cost and segmentation accuracy. The results have shown that the FMRF model-based ICM algorithm balances the computational cost and segmentation accuracy in land-cover segmentation from LIDAR data and co-registered bands.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a growing concern in reducing greenhouse gas emissions all over the world. The U.K. has set 34% target reduction of emission before 2020 and 80% before 2050 compared to 1990 recently in Post Copenhagen Report on Climate Change. In practise, Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) tools have been introduced to construction industry in order to achieve this such as. However, there is clear a disconnection between costs and environmental impacts over the life cycle of a built asset when using these two tools. Besides, the changes in Information and Communication Technologies (ICTs) lead to a change in the way information is represented, in particular, information is being fed more easily and distributed more quickly to different stakeholders by the use of tool such as the Building Information Modelling (BIM), with little consideration on incorporating LCC and LCA and their maximised usage within the BIM environment. The aim of this paper is to propose the development of a model-based LCC and LCA tool in order to provide sustainable building design decisions for clients, architects and quantity surveyors, by then an optimal investment decision can be made by studying the trade-off between costs and environmental impacts. An application framework is also proposed finally as the future work that shows how the proposed model can be incorporated into the BIM environment in practise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Construction planning plays a fundamental role in construction project management that requires team working among planners from a diverse range of disciplines and in geographically dispersed working situations. Model-based four-dimensional (4D) computer-aided design (CAD) groupware, though considered a possible approach to supporting collaborative planning, is still short of effective collaborative mechanisms for teamwork due to methodological, technological and social challenges. Targeting this problem, this paper proposes a model-based groupware solution to enable a group of multidisciplinary planners to perform real-time collaborative 4D planning across the Internet. In the light of the interactive definition method, and its computer-supported collaborative work (CSCW) design analysis, the paper discusses the realization of interactive collaborative mechanisms from software architecture, application mode, and data exchange protocol. These mechanisms have been integrated into a groupware solution, which was validated by a planning team in a truly geographically dispersed condition. Analysis of the validation results revealed that the proposed solution is feasible for real-time collaborative 4D planning to gain a robust construction plan through collaborative teamwork. The realization of this solution triggers further considerations about its enhancement for wider groupware applications.