22 resultados para Mode I


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The perceived wisdom about thin sheet fracture is that (i) the crack propagates under mixed mode I & III giving rise to a slant through-thickness fracture profile and (ii) the fracture toughness remains constant at low thickness and eventually decreases with increasing thickness. In the present study, fracture tests performed on thin DENT plates of various thicknesses made of stainless steel, mild steel, 6082-O and NS4 aluminium alloys, brass, bronze, lead, and zinc systematically exhibit (i) mode I “bath-tub”, i.e. “cup & cup”, fracture profiles with limited shear lips and significant localized necking (more than 50% thickness reduction), (ii) a fracture toughness that linearly increases with increasing thickness (in the range of 0.5–5 mm). The different contributions to the work expended during fracture of these materials are separated based on dimensional considerations. The paper emphasises the two parts of the work spent in the fracture process zone: the necking work and the “fracture” work. Experiments show that, as expected, the work of necking per unit area linearly increases with thickness. For a typical thickness of 1 mm, both fracture and necking contributions have the same order of magnitude in most of the metals investigated. A model is developed in order to independently evaluate the work of necking, which successfully predicts the experimental values. Furthermore, it enables the fracture energy to be derived from tests performed with only one specimen thickness. In a second modelling step, the work of fracture is computed using an enhanced void growth model valid in the quasi plane stress regime. The fracture energy varies linearly with the yield stress and void spacing and is a strong function of the hardening exponent and initial void volume fraction. The coupling of the two models allows the relative contributions of necking versus fracture to be quantified with respect to (i) the two length scales involved in this problem, i.e. the void spacing and the plate thickness, and (ii) the flow properties of the material. Each term can dominate depending on the properties of the material which explains the different behaviours reported in the literature about thin plate fracture toughness and its dependence with thickness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most building services products are installed while a building is constructed, but they are not operated until the building is commissioned. The warranty of the products may cover the time starting from their installation to the end of the warranty period. Prior to the commissioning of the building, the products are at a dormant mode (i.e., not operated) but protected by the warranty. For such products, both the usage intensity and the failure patterns are different from those with continuous usage intensity and failure patterns. This paper develops warranty cost models for repairable products with a dormant mode from both the manufacturer's and buyer's perspectives. Relationships between the failure patterns at the dormant mode and at the operational mode are also discussed. Numerical examples and sensitivity analysis are used to demonstrate the applicability of the methodology derived in the paper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A common bias among global climate models (GCMs) is that they exhibit tropospheric southern annular mode (SAM) variability that is much too persistent in the Southern Hemisphere (SH) summertime. This is of concern for the ability to accurately predict future SH circulation changes, so it is important that it be understood and alleviated. In this two-part study, specifically targeted experiments with the Canadian Middle Atmosphere Model (CMAM) are used to improve understanding of the enhanced summertime SAM persistence. Given the ubiquity of this bias among comprehensive GCMs, it is likely that the results will be relevant for other climate models. Here, in Part I, the influence of climatological circulation biases on SAM variability is assessed, with a particular focus on two common biases that could enhance summertime SAM persistence: the too-late breakdown of the Antarctic stratospheric vortex and the equatorward bias in the SH tropospheric midlatitude jet. Four simulations are used to investigate the role of each of these biases in CMAM. Nudging and bias correcting procedures are used to systematically remove zonal-mean stratospheric variability and/or remove climatological zonal wind biases. The SAM time-scale bias is not alleviated by improving either the timing of the stratospheric vortex breakdown or the climatological jet structure. Even in the absence of stratospheric variability and with an improved climatological circulation, the model time scales are biased long. This points toward a bias in internal tropospheric dynamics that is not caused by the tropospheric jet structure bias. The underlying cause of this is examined in more detail in Part II of this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown that Bretherton's view of baroclinic instability as the interaction of two counter-propagating Rossby waves (CRWs) can be extended to a general zonal flow and to a general dynamical system based on material conservation of potential vorticity (PV). The two CRWs have zero tilt with both altitude and latitude and are constructed from a pair of growing and decaying normal modes. One CRW has generally large amplitude in regions of positive meridional PV gradient and propagates westwards relative to the flow in such regions. Conversely, the other CRW has large amplitude in regions of negative PV gradient and propagates eastward relative to the zonal flow there. Two methods of construction are described. In the first, more heuristic, method a ‘home-base’ is chosen for each CRW and the other CRW is defined to have zero PV there. Consideration of the PV equation at the two home-bases gives ‘CRW equations’ quantifying the evolution of the amplitudes and phases of both CRWs. They involve only three coefficients describing the mutual interaction of the waves and their self-propagation speeds. These coefficients relate to PV anomalies formed by meridional fluid displacements and the wind induced by these anomalies at the home-bases. In the second method, the CRWs are defined by orthogonality constraints with respect to wave activity and energy growth, avoiding the subjective choice of home-bases. Using these constraints, the same form of CRW equations are obtained from global integrals of the PV equation, but the three coefficients are global integrals that are not so readily described by ‘PV-thinking’ arguments. Each CRW could not continue to exist alone, but together they can describe the time development of any flow whose initial conditions can be described by the pair of growing and decaying normal modes, including the possibility of a super-modal growth rate for a short period. A phase-locking configuration (and normal-mode growth) is possible only if the PV gradient takes opposite signs and the mean zonal wind and the PV gradient are positively correlated in the two distinct regions where the wave activity of each CRW is concentrated. These are easily interpreted local versions of the integral conditions for instability given by Charney and Stern and by Fjørtoft.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Newly observed data on the rotational constants of carbon suboxide in excited vibrational states of the low-wavenumber bending vibration ν7 have been successfully interpreted in terms of the two-dimensional anharmonic oscillator wavefunctions associated with this vibration. By combining these results with published infrared and Raman spectra the vibrational assignment has been extended and a refined bending potential for ν7 has been derived: this has a minimum at a bending angle of about 24° at the central C atom, with an energy maximum at the linear configuration some 23 cm−1 above the minimum. From similar data on the combination and hot bands of ν7 with ν4 (1587 cm−1) and ν2 (786 cm−1) the effective ν7 bending potential has also been determined in the one-quantum excited states of ν4 and ν2. The effective ν7 potential shows significant changes from the ground vibrational state; the central hump in the ν7 potential surface is increased to about 50 cm−1 in the v4 = 1 state, and decreased to about 1 cm−1 in the v2 = 1 state. In the light of these results vibrational assignments are suggested for most of the observed bands in the infrared and Raman spectra of C3O2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In part I of this study [Baggott, Clase, and Mills, Spectrochim. Acta Part A 42, 319 (1986)] we presented FTIR spectra of gas phase cyclobutene and modeled the v=1–3 stretching states of both olefinic and methylenic C–H bonds in terms of a local mode model. In this paper we present some improvements to our original model and make use of recently derived ‘‘x,K relations’’ to find the equivalent normal mode descriptions. The use of both the local mode and normal mode approaches to modeling the vibrational structure is described in some detail. We present evidence for Fermi resonance interactions between the methylenic C–H stretch overtones and ring C–C stretch vibrations, revealed in laser photoacoustic spectra in the v=4–6 region. An approximate model vibrational Hamiltonian is proposed to explain the observed structure and is used to calculate the dynamics of the C–H stretch local mode decay resulting from interaction with lower frequency ring modes. The implications of our experimental and theoretical studies for mode‐selective photochemistry are discussed briefly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vibrational structure of C---H stretching states in gas-phase cyclobutene was studied using FTIR spectroscopy in the range 700–9000 cm−1. The structure was modelled using two effective vibrational Hamiltonians, one for each type of C---H bond present, consisting of local mode basis functions subject to coupling with symmetrically equivalent bonds and to Fermi resonances with suitable low frequency vibrations. Best-fit model parameters were determined using least-squares routines and the model predictions are compared to the observed band positions and intensities. Some discussion is given of the relevance of the observed couplings to intramolecular vibrational redistribution (IVR) which results in the observation of statistical behaviour in cyclobutene isomerization induced by excitation of C---H stretching overtones in the visible region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously published data on the vibrational fundamentals and overtones of the carbonyl stretching modes of Ni(CO)4 and Co(CO)3NO are reinterpreted using the recent model of Mills and Robiette, including Darling-Dennison resonances and local mode effects. The harmonic wavenumber θm and anharmonicity constant xm associated with the carbonyl and nitrosyl stretching modes are derived, and the 13C and 18O isotopic shifts are discussed in relation to the harmonic and anharmonic force field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The =CH2 AND =CD2 stretching vibrational overtones of H2C=CD2 have been studied up to V= 6 and V= 3, respectively. We report their interpretation in terms of a transition from normal to local modes, involving Fermi resonance with the C=C stretching and CH2 scissoring vibrations. We discuss the alternative representation of the vibrational Hamiltonian matrix in local mode and normal mode basis functions, and conclude that the normal mode basis offers greater flexibility in representing small anharmonic couplings with other modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloud optical depth is one of the most poorly observed climate variables. The new “cloud mode” capability in the Aerosol Robotic Network (AERONET) will inexpensively yet dramatically increase cloud optical depth observations in both number and accuracy. Cloud mode optical depth retrievals from AERONET were evaluated at the Atmospheric Radiation Measurement program’s Oklahoma site in sky conditions ranging from broken clouds to overcast. For overcast cases, the 1.5 min average AERONET cloud mode optical depths agreed to within 15% of those from a standard ground‐based flux method. For broken cloud cases, AERONET retrievals also captured rapid variations detected by the microwave radiometer. For 3 year climatology derived from all nonprecipitating clouds, AERONET monthly mean cloud optical depths are generally larger than cloud radar retrievals because of the current cloud mode observation strategy that is biased toward measurements of optically thick clouds. This study has demonstrated a new way to enhance the existing AERONET infrastructure to observe cloud optical properties on a global scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2-[Methyl(2-methylphenyl)amino]ethanol undergoes an ortho-alkyllithiation reaction with n-butyllithium to lead to a new mixed benzyllithium−lithium alkoxide. This organolithium species reacts with PPh2Cl, with selective P−C bond formation, to afford the ligand 2-[methyl(2-((diphenylphosphino)methyl)phenyl)amino]ethanol L1. The coordination of the ligand L1 to copper(I) leads to the complex [Cu(L1)2](BF4), whose structure has been determined by an X-ray diffraction study. In the solid state, one of the ligands acts as a monodentate phosphine while the other adopts a tridentate P,N,O coordination mode. A variable-temperature 31P NMR study demonstrated the existence of an equilibrium between the two modes in solution, with a coalescence temperature of ca. 0 °C, indicating a double-hemilabile behavior for the nitrogen and the oxygen functions. L1 reacts with [Pd(Me)(Cl)(COD)] to give a dinuclear complex in which the ligand appears to behave as a bridging anionic P,O ligand. Such a complex could serve as a model for a key intermediate in the proposed mechanism for the homogeneous catalysis of the methoxycarbonylation of propyne by certain palladium(II) complexes containing P,N ligands. L1 can undergo a second ortho-alkylmetalation reaction with n-butyllithium which, after addition of PPh2Cl, provides the new ligand 2-{methyl[2-(bis(diphenylphosphino)methyl)phenyl]amino}ethanol (L2) in high yield.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For many climate forcings the dominant response of the extratropical circulation is a latitudinal shift of the tropospheric mid-latitude jets. The magnitude of this response appears to depend on climatological jet latitude in general circulation models (GCMs): lower latitude jets exhibit a larger shift. The reason for this latitude dependence is investigated for a particular forcing, heating of the equatorial stratosphere, which shifts the jet poleward. Spin-up ensembles with a simplified GCM are used to examine the evolution of the response for five different jet structures. These differ in the latitude of the eddy-driven jet, but have similar sub-tropical zonal winds. It is found that lower latitude jets exhibit a larger response due to stronger tropospheric eddy-mean flow feedbacks. A dominant feedback responsible for enhancing the poleward shift is an enhanced equatorward refraction of the eddies, resulting in an increased momentum flux, poleward of the low latitude critical line. The sensitivity of feedback strength to jet structure is associated with differences in the coherence of this behaviour across the spectrum of eddy phase speeds. In the configurations used, the higher latitude jets have a wider range of critical latitude locations. This reduces the coherence of the momentum flux anomalies associated with different phase speeds, with low phase speeds opposing the effect of high phase speeds. This suggests that, for a given sub-tropical zonal wind strength, the latitude of the eddy driven jet affects the feedback through its influence on the width of the region of westerly winds and the range of critical latitudes on the equatorward flank of the jet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a major mode of intraseasonal variability, which interacts with weather and climate systems on a near-global scale, the Madden – Julian Oscillation (MJO) is a crucial source of predictability for numerical weather prediction (NWP) models. Despite its global significance and comprehensive investigation, improvements in the representation of the MJO in an NWP context remain elusive. However, recent modifications to the model physics in the ECMWF model led to advances in the representation of atmospheric variability and the unprecedented propagation of the MJO signal through the entire integration period. In light of these recent advances, a set of hindcast experiments have been designed to assess the sensitivity of MJO simulation to the formulation of convection. Through the application of established MJO diagnostics, it is shown that the improvements in the representation of the MJO can be directly attributed to the modified convective parametrization. Furthermore, the improvements are attributed to the move from a moisture-convergent- to a relative-humidity-dependent formulation for organized deep entrainment. It is concluded that, in order to understand the physical mechanisms through which a relative-humidity-dependent formulation for entrainment led to an improved simulation of the MJO, a more process-based approach should be taken. T he application of process-based diagnostics t o t he hindcast experiments presented here will be the focus of Part II of this study.