16 resultados para Minimal Hausdor Frames
Resumo:
Runoff, sediment, total phosphorus and total dissolved phosphorus losses in overland flow were measured for two years on unbounded plots cropped with wheat and oats. Half of the field was cultivated with minimum tillage (shallow tillage with a tine cultivator) and half was conventionally ploughed. Within each cultivation treatment there were different treatment areas (TAs). In the first year of the experiment, one TA was cultivated up and down the slope, one TA was cultivated on the contour, with a beetle bank acting as a vegetative barrier partway up the slope, and one had a mixed direction cultivation treatment, with cultivation and drilling conducted up and down the slope and all subsequent operations conducted on the contour. In the second year, this mixed treatment was replaced with contour cultivation. Results showed no significant reduction in runoff, sediment losses or total phosphorus losses from minimum tillage when compared to the conventional plough treatment, but there were increased losses of total dissolved phosphorus with minimum tillage. The mixed direction cultivation treatment increased surface runoff and losses of sediment and phosphorus. Increasing surface roughness with contour cultivation reduced surface runoff compared to up and down slope cultivation in both the plough and minimum tillage treatment areas, but this trend was not significant. Sediment and phosphorus losses in the contour cultivation treatment followed a very similar pattern to runoff. Combining contour cultivation with a vegetative barrier in the form of a beetle bank to reduce slope length resulted in a non-significant reduction in surface runoff, sediment and total phosphorus when compared to up and down slope cultivation, but there was a clear trend towards reduced losses. However, the addition of a beetle bank did not provide a significant reduction in runoff, sediment losses or total phosphorus losses when compared to contour cultivation, suggesting only a marginal additional benefit. The economic implications for farmers of the different treatment options are investigated in order to assess their suitability for implementation at a field scale.
Resumo:
OBJECTIVE: To compare insulin sensitivity (Si) from a frequently sampled intravenous glucose tolerance test (FSIGT) and subsequent minimal model analyses with surrogate measures of insulin sensitivity and resistance and to compare features of the metabolic syndrome between Caucasians and Indian Asians living in the UK. SUBJECTS: In all, 27 healthy male volunteers (14 UK Caucasians and 13 UK Indian Asians), with a mean age of 51.2 +/- 1.5 y, BMI of 25.8 +/- 0.6 kg/m(2) and Si of 2.85 +/- 0.37. MEASUREMENTS: Si was determined from an FSIGT with subsequent minimal model analysis. The concentrations of insulin, glucose and nonesterified fatty acids (NEFA) were analysed in fasting plasma and used to calculate surrogate measure of insulin sensitivity (quantitative insulin sensitivity check index (QUICKI), revised QUICKI) and resistance (homeostasis for insulin resistance (HOMA IR), fasting insulin resistance index (FIRI), Bennetts index, fasting insulin, insulin-to-glucose ratio). Plasma concentrations of triacylglycerol (TAG), total cholesterol, high density cholesterol, (HDL-C) and low density cholesterol, (LDL-C) were also measured in the fasted state. Anthropometric measurements were conducted to determine body-fat distribution. RESULTS: Correlation analysis identified the strongest relationship between Si and the revised QUICKI (r = 0.67; P = 0.000). Significant associations were also observed between Si and QUICKI (r = 0.51; P = 0.007), HOMA IR (r = -0.50; P = 0.009), FIRI and fasting insulin. The Indian Asian group had lower HDL-C (P = 0.001), a higher waist-hip ratio (P = 0.01) and were significantly less insulin sensitive (Si) than the Caucasian group (P = 0.02). CONCLUSION: The revised QUICKI demonstrated a statistically strong relationship with the minimal model. However, it was unable to differentiate between insulin-sensitive and -resistant groups in this study. Future larger studies in population groups with varying degrees of insulin sensitivity are recommended to investigate the general applicability of the revised QUICKI surrogate technique.
Resumo:
The human electroencephalogram (EEG) is globally characterized by a 1/f power spectrum superimposed with certain peaks, whereby the "alpha peak" in a frequency range of 8-14 Hz is the most prominent one for relaxed states of wakefulness. We present simulations of a minimal dynamical network model of leaky integrator neurons attached to the nodes of an evolving directed and weighted random graph (an Erdos-Renyi graph). We derive a model of the dendritic field potential (DFP) for the neurons leading to a simulated EEG that describes the global activity of the network. Depending on the network size, we find an oscillatory transition of the simulated EEG when the network reaches a critical connectivity. This transition, indicated by a suitably defined order parameter, is reflected by a sudden change of the network's topology when super-cycles are formed from merging isolated loops. After the oscillatory transition, the power spectra of simulated EEG time series exhibit a 1/f continuum superimposed with certain peaks. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Starting from the classical Saltzman two-dimensional convection equations, we derive via a severe spectral truncation a minimal 10 ODE system which includes the thermal effect of viscous dissipation. Neglecting this process leads to a dynamical system which includes a decoupled generalized Lorenz system. The consideration of this process breaks an important symmetry and couples the dynamics of fast and slow variables, with the ensuing modifications to the structural properties of the attractor and of the spectral features. When the relevant nondimensional number (Eckert number Ec) is different from zero, an additional time scale of O(Ec−1) is introduced in the system, as shown with standard multiscale analysis and made clear by several numerical evidences. Moreover, the system is ergodic and hyperbolic, the slow variables feature long-term memory with 1/f3/2 power spectra, and the fast variables feature amplitude modulation. Increasing the strength of the thermal-viscous feedback has a stabilizing effect, as both the metric entropy and the Kaplan-Yorke attractor dimension decrease monotonically with Ec. The analyzed system features very rich dynamics: it overcomes some of the limitations of the Lorenz system and might have prototypical value in relevant processes in complex systems dynamics, such as the interaction between slow and fast variables, the presence of long-term memory, and the associated extreme value statistics. This analysis shows how neglecting the coupling of slow and fast variables only on the basis of scale analysis can be catastrophic. In fact, this leads to spurious invariances that affect essential dynamical properties (ergodicity, hyperbolicity) and that cause the model losing ability in describing intrinsically multiscale processes.
Resumo:
A minimal model of species migration is presented which takes the form of a parabolic equation with boundary conditions and initial data. Solutions to the differential problem are obtained that can be used to describe the small- and large-time evolution of a species distribution within a bounded domain. These expressions are compared with the results of numerical simulations and are found to be satisfactory within appropriate temporal regimes. The solutions presented can be used to describe existing observations of nematode distributions, can be used as the basis for further work on nematode migration, and may also be interpreted more generally.
Resumo:
In addition to CO2, the climate impact of aviation is strongly influenced by non-CO2 emissions, such as nitrogen oxides, influencing ozone and methane, and water vapour, which can lead to the formation of persistent contrails in ice-supersaturated regions. Because these non-CO2 emission effects are characterised by a short lifetime, their climate impact largely depends on emission location and time; that is to say, emissions in certain locations (or times) can lead to a greater climate impact (even on the global average) than the same emission in other locations (or times). Avoiding these climate-sensitive regions might thus be beneficial to climate. Here, we describe a modelling chain for investigating this climate impact mitigation option. This modelling chain forms a multi-step modelling approach, starting with the simulation of the fate of emissions released at a certain location and time (time-region grid points). This is performed with the chemistry–climate model EMAC, extended via the two submodels AIRTRAC (V1.0) and CONTRAIL (V1.0), which describe the contribution of emissions to the composition of the atmosphere and to contrail formation, respectively. The impact of emissions from the large number of time-region grid points is efficiently calculated by applying a Lagrangian scheme. EMAC also includes the calculation of radiative impacts, which are, in a second step, the input to climate metric formulas describing the global climate impact of the emission at each time-region grid point. The result of the modelling chain comprises a four-dimensional data set in space and time, which we call climate cost functions and which describes the global climate impact of an emission at each grid point and each point in time. In a third step, these climate cost functions are used in an air traffic simulator (SAAM) coupled to an emission tool (AEM) to optimise aircraft trajectories for the North Atlantic region. Here, we describe the details of this new modelling approach and show some example results. A number of sensitivity analyses are performed to motivate the settings of individual parameters. A stepwise sanity check of the results of the modelling chain is undertaken to demonstrate the plausibility of the climate cost functions.
Resumo:
Fracking in England has been the subject of significant controversy and has sparked not only public protest but also an associated framing war with differing social constructions of the technology adopted by different sides. This article explores the frames and counter-frames which have been employed by both the anti-fracking movement and by government and the oil and gas industry. It then considers the way in which the English planning and regulatory permitting systems have provided space for these frames within the relevant machinery for public participation. The article thus enables one to see which frames have been allowed a voice and which have been excluded.
Resumo:
Using Azoulay's frame of the civil gaze, this chapter examines selected Second World War images, catalogued under 'interpreter' in the IWM's photographic archive, looking at representative situations in which interpreters typically operate in wartime - communicating with clandestine forces, liaising between the army and civilians, and dealing with the aftermath of war.
Resumo:
PECAM-1 is a member of the superfamily of immunoglobulins (Ig) and is expressed on platelets at moderate level. PECAM-1 has been reported to have contrasting effects on platelet activation by the collagen receptor GPVI and the integrin, alphaIIbbeta3, even though both receptors signal through Src-kinase regulation of PLCgamma2. The present study compares the role of PECAM-1 on platelet activation by these two receptors and by the lectin receptor, CLEC-2, which also signals via PLCgamma2. Studies using PECAM-1 knockout-mice and cross-linking of PECAM-1 using specific antibodies demonstrated a minor inhibitory role on platelet responses to the above three receptors and also under some conditions to the G-protein agonist thrombin. The degree of inhibition was considerably less than that produced by PGI2, which elevates cAMP. There was no significant difference in thrombus formation on collagen in PECAM-1-/- platelets relative to litter-matched controls. The very weak inhibitory effect of PECAM-1 on platelet activation relative to that of PGI2 indicate that the Ig-receptor is not a major regulator of platelet activation. PECAM-1 has been reported to have contrasting effects on platelet activation. The present study demonstrates a very mild or negligible effect on platelet activation in response to stimulation by a variety of agonists, thereby questioning the physiological role of the immunoglobulin receptor as a major regulator of platelet activation.