107 resultados para Methodological importance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uptake of metals by earthworms occurs predominantly via the soil pore water, or via an uptake route which is related to the soil pore water metal concentration. However, it has been suggested that the speciation of the metal is also important. A novel technique is described which exposes Eisenia andrei Bouche to contaminant bearing solutions in which the chemical factors affecting its speciation may be individually and systematically manipulated. In a preliminary experiment, the LC50 for copper nitrate was 0.046 mg l(-1) (95 % confidence intervals: 0.03 and 0.07 mg l(-1)). There was a significant positive correlation between earthworm mortality and bulk copper concentration in solution (R-2 = 0.88, P less than or equal to 0.001), and a significant positive increase in earthworm tissue copper concentration with increasing copper concentration in solution (R-2 = 0.97, P less than or equal to 0.001). It is anticipated that quantifying the effect of soil solution chemical speciation on copper bioavailability will provide an excellent aid to understanding the importance of chemical composition and the speciation of metals, in the calculation of toxicological parameters.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of the European Commission (EC)'s revision of the Sewage Sludge Directive and the development of a Biowaste Directive, there was recognition of the difficulty of comparing data from Member States (MSs) because of differences in sampling and analytical procedures. The 'HORIZONTAL' initiative, funded by the EC and MSs, seeks to address these differences in approach and to produce standardised procedures in the form of CEN standards. This article is a preliminary investigation into aspects of the sampling of biosolids, composts and soils to which there is a history of biosolid application. The article provides information on the measurement uncertainty associated with sampling from heaps, large bags and pipes and soils in the landscape under a limited set of conditions, using sampling approaches in space and time and sample numbers based on procedures widely used in the relevant industries and when sampling similar materials. These preliminary results suggest that considerably more information is required before the appropriate sample design, optimum number of samples, number of samples comprising a composite, and temporal and spatial frequency of sampling might be recommended to achieve consistent results of a high level of precision and confidence. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need to map vegetation communities over large areas for nature conservation and to predict the impact of environmental change on vegetation distributions, has stimulated the development of techniques for predictive vegetation mapping. Predictive vegetation studies start with the development of a model relating vegetation units and mapped physical data, followed by the application of that model to a geographic database and over a wide range of spatial scales. This field is particularly important for identifying sites for rare and endangered species and locations of high biodiversity such as many areas of the Mediterranean Basin. The potential of the approach is illustrated with a mapping exercise in the alti-meditterranean zone of Lefka Ori in Crete. The study established the nature of the relationship between vegetation communities and physical data including altitude, slope and geomorphology. In this way the knowledge of community distribution was improved enabling a GIS-based model capable of predicting community distribution to be constructed. The paper describes the development of the spatial model and the methodological problems of predictive mapping for monitoring Mediterranean ecosystems. The paper concludes with a discussion of the role of predictive vegetation mapping and other spatial techniques, such as fuzzy mapping and geostatistics, for improving our understanding of the dynamics of Mediterranean ecosystems and for practical management in a region that is under increasing pressure from human impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect(1), although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate(2). Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds(3). Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive(1,2,4). Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model(5,6) for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The validity of convective parametrization breaks down at the resolution of mesoscale models, and the success of parametrized versus explicit treatments of convection is likely to depend on the large-scale environment. In this paper we examine the hypothesis that a key feature determining the sensitivity to the environment is whether the forcing of convection is sufficiently homogeneous and slowly varying that the convection can be considered to be in equilibrium. Two case studies of mesoscale convective systems over the UK, one where equilibrium conditions are expected and one where equilibrium is unlikely, are simulated using a mesoscale forecasting model. The time evolution of area-average convective available potential energy and the time evolution and magnitude of the timescale of convective adjustment are consistent with the hypothesis of equilibrium for case 1 and non-equilibrium for case 2. For each case, three experiments are performed with different partitionings between parametrized and explicit convection: fully parametrized convection, fully explicit convection and a simulation with significant amounts of both. In the equilibrium case, bulk properties of the convection such as area-integrated rain rates are insensitive to the treatment of convection. However, the detailed structure of the precipitation field changes; the simulation with parametrized convection behaves well and produces a smooth field that follows the forcing region, and the simulation with explicit convection has a small number of localized intense regions of precipitation that track with the mid-levelflow. For the non-equilibrium case, bulk properties of the convection such as area-integrated rain rates are sensitive to the treatment of convection. The simulation with explicit convection behaves similarly to the equilibrium case with a few localized precipitation regions. In contrast, the cumulus parametrization fails dramatically and develops intense propagating bows of precipitation that were not observed. The simulations with both parametrized and explicit convection follow the pattern seen in the other experiments, with a transition over the duration of the run from parametrized to explicit precipitation. The impact of convection on the large-scaleflow, as measured by upper-level wind and potential-vorticity perturbations, is very sensitive to the partitioning of convection for both cases. © Royal Meteorological Society, 2006. Contributions by P. A. Clark and M. E. B. Gray are Crown Copyright.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1 Adaptation of plant populations to local environments has been shown in many species but local adaptation is not always apparent and spatial scales of differentiation are not well known. In a reciprocal transplant experiment we tested whether: (i) three widespread grassland species are locally adapted at a European scale; (ii) detection of local adaptation depends on competition with the local plant community; and (iii) local differentiation between neighbouring populations from contrasting habitats can be stronger than differentiation at a European scale. 2 Seeds of Holcus lanatus, Lotus corniculatus and Plantago lanceolata from a Swiss, Czech and UK population were sown in a reciprocal transplant experiment at fields that exhibit environmental conditions similar to the source sites. Seedling emergence, survival, growth and reproduction were recorded for two consecutive years. 3 The effect of competition was tested by comparing individuals in weeded monocultures with plants sown together with species from the local grassland community. To compare large-scale vs. small-scale differentiation, a neighbouring population from a contrasting habitat (wet-dry contrast) was compared with the 'home' and 'foreign' populations. 4 In P. lanceolata and H. lanatus, a significant home-site advantage was detected in fitness-related traits, thus indicating local adaptation. In L. corniculatus, an overall superiority of one provenance was found. 5 The detection of local adaptation depended on competition with the local plant community. In the absence of competition the home-site advantage was underestimated in P. lanceolata and overestimated in H. lanatus. 6 A significant population differentiation between contrasting local habitats was found. In some traits, this small-scale was greater than large-scale differentiation between countries. 7 Our results indicate that local adaptation in real plant communities cannot necessarily be predicted from plants grown in weeded monocultures and that tests on the relationship between fitness and geographical distance have to account for habitat-dependent small-scale differentiation. Considering the strong small-scale differentiation, a local provenance from a different habitat may not be the best choice in ecological restoration if distant populations from a more similar habitat are available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methodology used to measure in vitro gas production is reviewed to determine impacts of sources of variation on resultant gas production profiles (GPP). Current methods include measurement of gas production at constant pressure (e.g., use of gas tight syringes), a system that is inexpensive, but may be less sensitive than others thereby affecting its suitability in some situations. Automated systems that measure gas production at constant volume allow pressure to accumulate in the bottle, which is recorded at different times to produce a GPP, and may result in sufficiently high pressure that solubility of evolved gases in the medium is affected, thereby resulting in a recorded volume of gas that is lower than that predicted from stoichiometric calculations. Several other methods measure gas production at constant pressure and volume with either pressure transducers or sensors, and these may be manual, semi-automated or fully automated in operation. In these systems, gas is released as pressure increases, and vented gas is recorded. Agitating the medium does not consistently produce more gas with automated systems, and little or no effect of agitation was observed with manual systems. The apparatus affects GPP, but mathematical manipulation may enable effects of apparatus to be removed. The amount of substrate affects the volume of gas produced, but not rate of gas production, provided there is sufficient buffering capacity in the medium. Systems that use a very small amount of substrate are prone to experimental error in sample weighing. Effect of sample preparation on GPP has been found to be important, but further research is required to determine the optimum preparation that mimics animal chewing. Inoculum is the single largest source of variation in measuring GPP, as rumen fluid is variable and sampling schedules, diets fed to donor animals and ratios of rumen fluid/medium must be selected such that microbial activity is sufficiently high that it does not affect rate and extent of fermentation. Species of donor animal may also cause differences in GPP. End point measures can be mathematically manipulated to account for species differences, but rates of fermentation are not related. Other sources of inocula that have been used include caecal fluid (primarily for investigating hindgut fermentation in monogastrics), effluent from simulated rumen fermentation (e.g., 'Rusitec', which was as variable as rumen fluid), faeces, and frozen or freeze-dried rumen fluid (which were both less active than fresh rumen fluid). Use of mixtures of cell-free enzymes, or pure cultures of bacteria, may be a way of increasing GPP reproducibility, while reducing reliance on surgically modified animals. However, more research is required to develop these inocula. A number of media have been developed which buffer the incubation and provide relevant micro-nutrients to the microorganisms. To date, little research has been completed on relationships between the composition of the medium and measured GPP. However, comparing GPP from media either rich in N or N-free, allows assessment of contributions of N containing compounds in the sample. (c) 2005 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various food and feed samples including groundnut seed, maize, sorghum, soyabean cake, groundnut cake, cotton cake, poultry feed, buffalo milk, cow milk and milk powders were collected from farmers' fields, farmer's stores, oil millers storage, traders' storage, retail shops and supermarkets. More than 2000 samples were analysed by ELISA and most of the commodities, with the exception of sorghum seed, contained high levels of aflatoxin. Groundnut cake was one of the major cattle feed ingredients in the peri-urban area of Hyderabad (Andhra Pradesh, India) and >75% of the samples contained >100 µg/kg aflatoxin, leading to a high level of aflatoxin M1, in milk samples. Strategies to reduce aflatoxin levels (especially in groundnut) by management interventions at preharvest, harvest and storage, are discussed.