67 resultados para Measuring instruments.
Resumo:
A new method of measuring the total conductivity of atmospheric air is described. It depends on determination of the electrical relaxation time of a horizontal wire, mounted between two insulators, which is initially grounded and then allowed to charge freely. The total air conductivity derived is compared with that from an ion mobility spectrometer. Results from the two techniques agreed to within 1.2 fS m(-1). (c) 2006 American Institute of Physics.
Resumo:
In the summer 2000 EXPORT aircraft campaign (European eXport of Precursors and Ozone by long-Range Transport), two comprehensively instrumented research aircraft measuring a variety of chemical species flew wing tip to wing tip for a period of one and a quarter hours. During this interval a comparison was undertaken of the measurements of nitrogen oxide (NO), odd nitrogen species (NOy), carbon monoxide (CO) and ozone (O3). The comparison was performed at two different flight levels, which provided a 10-fold variation in the concentrations of both NO (10 to 1000 parts per trillion by volume (pptv)) and NOy (200 to over 2500 pptv). Large peaks of NO and NOy observed from the Falcon 20, which were at first thought to be from the exhaust of the C-130, were also detected on the 4 channel NOxy instrument aboard the C-130. These peaks were a good indication that both aircraft were in the same air mass and that the Falcon 20 was not in the exhaust plume of the C-130. Correlations and statistical analysis are presented between the instruments used on the two separate aircraft platforms. These were found to be in good agreement giving a high degree of correlation for the ambient air studied. Any deviations from the correlations are accounted for in the estimated inaccuracies of the instruments. These results help to establish that the instruments aboard the separate aircraft are reliably able to measure the corresponding chemical species in the range of conditions sampled and that data collected by both aircraft can be co-ordinated for purposes of interpretation.
Resumo:
Objective: Community-based care for mental disorders places considerable burden on families and carers. Measuring their experiences has become a priority, but there is no consensus on appropriate instruments. We aimed to review instruments carers consider relevant to their needs and assess evidence for their use. Method: A literature search was conducted for outcome measures used with mental health carers. Identified instruments were assessed for their relevance to the outcomes identified by carers and their psychometric properties. Results: Three hundred and ninety two published articles referring to 241 outcome measures were identified, 64 of which were eligible for review (used in three or more studies). Twenty-six instruments had good psychometric properties; they measured (i) carers' well-being, (ii) the experience of caregiving and (iii) carers' needs for professional support. Conclusion: Measures exist which have been used to assess the most salient aspects of carer outcome in mental health. All require further work to establish their psychometric properties fully.
Resumo:
A weather balloon and its suspended instrument package behave like a pendulum with a moving pivot. This dynamical system is exploited here for the detection of atmospheric turbulence. By adding an accelerometer to the instrument package, the size of the swings induced by atmospheric turbulence can be measured. In test flights, strong turbulence has induced accelerations greater than 5g, where g = 9.81 m s−2. Calibration of the accelerometer data with a vertically orientated lidar has allowed eddy dissipation rate values of between 10−3 and 10−2 m2 s−3 to be derived from the accelerometer data. The novel use of a whole weather balloon and its adapted instrument package can be used as a new instrument to make standardized in situ measurements of turbulence.
Resumo:
A bipolar air conductivity instrument is described for use with a standard disposable meteorological radiosonde package. It is intended to provide electrical measurements at cloud boundaries, where the ratio of the bipolar air conductivities is affected by the presence of charged particles. The sensors are two identical Gerdien-type electrodes, which, through a voltage decay method, measure positive and negative air conductivities simultaneously. Voltage decay provides a thermally stable approach and a novel low current leakage electrometer switch is described which initiates the decay sequence. The radiosonde supplies power and telemetry, as well as measuring simultaneous meteorological data. A test flight using a tethered balloon determined positive (σ+) and negative (σ−) conductivities of σ+ = 2.77±0.2 fS m−1 and σ− = 2.82±0.2 fS m−1, respectively, at 400 m aloft, with σ+/σ− = 0.98±0.04.
Resumo:
We describe a remote sensing method for measuring the internal interface height field in a rotating, two-layer annulus laboratory experiment. The method is non-invasive, avoiding the possibility of an interaction between the flow and the measurement device. The height fields retrieved are accurate and highly resolved in both space and time. The technique is based on a flow visualization method developed by previous workers, and relies upon the optical rotation properties of the working liquids. The previous methods returned only qualitative interface maps, however. In the present study, a technique is developed for deriving quantitative maps by calibrating height against the colour fields registered by a camera which views the flow from above. We use a layer-wise torque balance analysis to determine the equilibrium interface height field analytically, in order to derive the calibration curves. With the current system, viewing an annulus of outer radius 125 mm and depth 250 mm from a distance of 2 m, the inferred height fields have horizontal, vertical and temporal resolutions of up to 0.2 mm, 1 mm and 0.04 s, respectively.
Resumo:
Magnetic sensors have been added to a standard weather balloon radiosonde package to detect motion in turbulent air. These measure the terrestrial magnetic field and return data over the standard uhf radio telemetry. Variability in the magnetic sensor data is caused by motion of the instrument package. A series of radiosonde ascents carrying these sensors has been made near a Doppler lidar measuring atmospheric properties. Lidar-retrieved quantities include vertical velocity (w) profile and its standard deviation (w). w determined over 1 h is compared with the radiosonde motion variability at the same heights. Vertical motion in the radiosonde is found to be robustly increased when w>0.75 m s−1 and is linearly proportional to w. ©2009 American Institute of Physics
Resumo:
While the standard models of concentration addition and independent action predict overall toxicity of multicomponent mixtures reasonably, interactions may limit the predictive capability when a few compounds dominate a mixture. This study was conducted to test if statistically significant systematic deviations from concentration addition (i.e. synergism/antagonism, dose ratio- or dose level-dependency) occur when two taxonomically unrelated species, the earthworm Eisenia fetida and the nematode Caenorhabditis elegans were exposed to a full range of mixtures of the similar acting neonicotinoid pesticides imidacloprid and thiacloprid. The effect of the mixtures on C. elegans was described significantly better (p<0.01) by a dose level-dependent deviation from the concentration addition model than by the reference model alone, while the reference model description of the effects on E. fetida could not be significantly improved. These results highlight that deviations from concentration addition are possible even with similar acting compounds, but that the nature of such deviations are species dependent. For improving ecological risk assessment of simple mixtures, this implies that the concentration addition model may need to be used in a probabilistic context, rather than in its traditional deterministic manner. Crown Copyright (C) 2008 Published by Elsevier Inc. All rights reserved.
Resumo:
Root characteristics of seedlings of five different barley genotypes were analysed in 2D using gel chambers, and in 3D using soil sacs that were destructively harvested and pots of soil that were assessed non-invasively using X-ray microtomography. After 5 days, Chime produced the greatest number of root axes (similar to 6) and Mehola significantly less (similar to 4) in all growing methods. Total root length was longest in GSH01915 and shortest in Mehola for all methods, but both total length and average root diameter were significantly larger for plants grown in gel chambers than those grown in soil. The ranking of particular growth traits (root number, root angular spread) of plants grown in gel plates, soil sacs and X-ray pots was similar, but plants grown in the gel chambers had a different order of ranking for root length to the soil-grown plants. Analysis of angles in soil-grown plants showed that Tadmore had the most even spread of individual roots and Chime had a propensity for non-uniform distribution and root clumping. The roots of Mehola were less well spread than the barley cultivars supporting the suggestion that wild and landrace barleys tend to have a narrower angular spread than modern cultivars. The three dimensional analysis of root systems carried out in this study provides insights into the limitations of screening methods for root traits and useful data for modelling root architecture.
Resumo:
Pressing global environmental problems highlight the need to develop tools to measure progress towards "sustainability." However, some argue that any such attempt inevitably reflects the views of those creating such tools and only produce highly contested notions of "reality." To explore this tension, we critically assesses the Environmental Sustainability Index (ESI), a well-publicized product of the World Economic Forum that is designed to measure 'sustainability' by ranking nations on league tables based on extensive databases of environmental indicators. By recreating this index, and then using statistical tools (principal components analysis) to test relations between various components of the index, we challenge ways in which countries are ranked in the ESI. Based on this analysis, we suggest (1) that the approach taken to aggregate, interpret and present the ESI creates a misleading impression that Western countries are more sustainable than the developing world; (2) that unaccounted methodological biases allowed the authors of the ESI to over-generalize the relative 'sustainability' of different countries; and, (3) that this has resulted in simplistic conclusions on the relation between economic growth and environmental sustainability. This criticism should not be interpreted as a call for the abandonment of efforts to create standardized comparable data. Instead, this paper proposes that indicator selection and data collection should draw on a range of voices, including local stakeholders as well as international experts. We also propose that aggregating data into final league ranking tables is too prone to error and creates the illusion of absolute and categorical interpretations. (c) 2004 Elsevier Ltd. All rights reserved.