43 resultados para Marcel Escoffier
Resumo:
The purpose of this programme was to synthesize and analyze new bioconjugates of interest for the potential inhibition of the influenza virus, using poly(aspartimide) as a polymer support. The macromolecular targets were obtained by attaching various sialic acid-linker-amine compounds to poly(aspartimide). 1H and 13C NMR studies were then performed to analyze the degree of incorporation of the sialic acid-linker-amine compounds within the poly(aspartimide). These studies illustrated that the incorporation was dependent on the nature of the spacer between the sugar and the amine functionality. Thus aliphatic spacers favoured the inclusion of sialic acid onto the polymer support whereas compounds having only an aromatic moiety between the sialic acid and the amine could not be easily incorporated.
Resumo:
In the ‘Object as Subject’ exhibition held at the Stephen Lawrence Gallery, Greenwich University, myself and two other artists showed work which explores the use of the ‘found object’ in their respective practices. My work was selected by the gallery curator David Waterworth. The work exhibited by me, two multi-media pieces and two films, continues my (practice as research) investigation into using everyday objects as starting points for creating work in a variety of mediums including: sculpture, films, installations and multiples. In this work I address a range of subject matters – philosophical, social and cultural. The history of the use of found object in art began in early 20th century European art when Marcel Duchamp and Pablo Picasso independently introduced everyday objects into their practice. My work continues this research.
Resumo:
Background If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management. Methodology/Main findings We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e. 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance. Conclusions/significance Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink.
Resumo:
The ability of four operational weather forecast models [ECMWF, Action de Recherche Petite Echelle Grande Echelle model (ARPEGE), Regional Atmospheric Climate Model (RACMO), and Met Office] to generate a cloud at the right location and time (the cloud frequency of occurrence) is assessed in the present paper using a two-year time series of observations collected by profiling ground-based active remote sensors (cloud radar and lidar) located at three different sites in western Europe (Cabauw. Netherlands; Chilbolton, United Kingdom; and Palaiseau, France). Particular attention is given to potential biases that may arise from instrumentation differences (especially sensitivity) from one site to another and intermittent sampling. In a second step the statistical properties of the cloud variables involved in most advanced cloud schemes of numerical weather forecast models (ice water content and cloud fraction) are characterized and compared with their counterparts in the models. The two years of observations are first considered as a whole in order to evaluate the accuracy of the statistical representation of the cloud variables in each model. It is shown that all models tend to produce too many high-level clouds, with too-high cloud fraction and ice water content. The midlevel and low-level cloud occurrence is also generally overestimated, with too-low cloud fraction but a correct ice water content. The dataset is then divided into seasons to evaluate the potential of the models to generate different cloud situations in response to different large-scale forcings. Strong variations in cloud occurrence are found in the observations from one season to the same season the following year as well as in the seasonal cycle. Overall, the model biases observed using the whole dataset are still found at seasonal scale, but the models generally manage to well reproduce the observed seasonal variations in cloud occurrence. Overall, models do not generate the same cloud fraction distributions and these distributions do not agree with the observations. Another general conclusion is that the use of continuous ground-based radar and lidar observations is definitely a powerful tool for evaluating model cloud schemes and for a responsive assessment of the benefit achieved by changing or tuning a model cloud