27 resultados para Malondialdehyde-acetaldehyde Adducts


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We hypothesized that the hepatotoxicity that develops after the induction of oxidative stress (induced by d-galactosamine [GalN]) can be ameliorated by alpha-tocopherol (ATC) and the soy isoflavone daidzein. To test this, we ranked and assigned male Wistar rats into 6 groups, which involved pretreatment (ATC or daidzein) for 1 hour followed by treatment (GalN) for 23 hours. Histopathologic analysis showed that GalN administration induced marked necrosis (P < .001), steatosis (P < .001), both lobular and portal inflammations (P < .001), overall histopathologic score (P < .001), and activation of caspase-3 in the liver (P < .001). Immunohistochemical staining of malondialdehyde-protein adducts, a measure of oxidative stress, was increased in response to GalN (P < .001). Paradoxically, there were increases in total (P < .05) and cytosolic superoxide dismutase (P < .001) activities after GalN administration, indicative of an up-regulation of antioxidant defenses. The concentration of total protein (P < .001), albumin (P < .01), and globulin fractions (P < .001) in the plasma, as well as the activity of aspartate aminotransferase (P < .001), was significantly perturbed after GalN treatment, reflective of overall acute hepatic injury. Administration of daidzein showed a significant amelioration of the Ga1N-induced increase in malondialdehyde-protein adducts (P < .01) and cytosolic superoxide dismutase activities (P < .01) in the liver. However, all other variables were not significantly altered in response to daidzein. In response to ATC pretreatment, the total histopathologic score (P < .05), degree of necrosis (P < .05), and both lobular (P < .05) and portal (P = .05) inflammations were significantly ameliorated. To conclude, both daidzein and ATC protect the liver against oxidative damage possibly via different pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accumulation of advanced glycation end-products (AGEs) on proteins is associated with the development of diabetic complications. Although the overall extent of modification of protein by AGEs is limited, localization of these modifications at a few critical sites might have a significant effect on protein structure and function. In the present study, we describe the sites of modification of RNase by glyoxal under physiological conditions. Arg(39) and Arg(85), which are closest to the active site of the enzyme, were identified as the primary sites of formation of the glyoxal-derived dihydroxyimidazolidine and hydroimidazolone adducts. Lower amounts of modification were detected at Arg(10), while Arg(33) appeared to be unmodified. We conclude that dihydroxyimidazolidine adducts are the primary products of modification of protein by glyoxal, that Arg(39) and Arg(85) are the primary sites of modification of RNase by glyoxal, and that modification of arginine residues during Maillard reactions of proteins is a highly selective process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation, the IR and ligand field spectra and the structures of the mixed-ligand addition compounds [(N,N-dimethyl-1,2-diaminoethane)bis(1-(2-thienyl)-4,4,4-trifluoro-1,3-butanedionato)cobalt(II)], [Co(thtf)2me2en], and [(N,N,N′,N′-tetramethyl-1,2-diaminoethane)bis(1-(2-thienyl)-4,4,4-trifluoro-1,3-butanedionato)cobalt(II)], [Co(thtf)2me4en], are reported. The structures were determined by single crystal X-ray diffraction analysis (monoclinic, space group P21/c, Z=4 with a=10.708(6), b=19.531(6), c=13.352(6) Å, β=111.64(10)°, R1=0.0642 and wR2=0.1719 for [Co(thtf)2(me2en)] and a=12.033(6), b=15.565(6), c=15.339(6) Å, β=92.57(6)°, R1=0.0612 and wR2=0.1504 for [Co(thtf)2me4en]). The structures are distorted octahedral and the shortest cobalt–cobalt separation distances are 5.388(2) Å in [Co(thtf)2me2en] and 8.675(3) Å in [Co(thtf)2me4en]. In both compounds the diamine molecules attain the gauche conformation. The U(Z,Z) conformation of the β-dione leads to a semi-chair conformation of the β-dionato chelate rings. The relative orientation of the groups attached to the β-dionato moiety depends on the extent of stereoelectronic effects the N-substitution of the diamine entails. In [Co(thtf)2me2en] the intraligand distance separating the trifluoromethyl carbon atoms is 5.281(18) Å while in [Co(thtf)2me2en] it increases to 8.338(9) Å. The cobalt–cobalt separation distance, the orientation of the chelate rings and the extent of N-substitution seem to affect hydrogen bonding. While in [Co(thtf)2me2en] inter- and intraligand hydrogen bonding is implicated, it is totally absent in [Co(thtf)2me4en].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The syntheses of the complexes formulated as SnMe2Cl2(Ad)2 (I), SnMe2Cl2(Ado)2 (II), SnMe2Cl2- (9-MeAd)2 (III) [Ad = adenine, Ado = adenosine, 9-MeAd = 9-methyladenine] as well as the more unexpected SnPhCl2(OH)(Ad)2·3H2O (IV) and SnPhCl3(Ado)2 (V) by reaction of SnMe2Cl2 or SnPh2Cl2 with the appropriate bases in methanol is described. 1H NMR studies suggest that coordination is through the N-7 position of the adenine base.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Essential and Molecular Dynamics (ED/MD) have been used to model the conformational changes of a protein implicated in a conformational disease-cataract, the largest cause of blindness in the world-after non-enzymic post-translational modification. Cyanate modification did not significantly alter flexibility, while the Schiff's base adduct produced a more flexible N-terminal domain, and intra-secondary structure regions, than either the cyanate adduct or the native structure. Glycation also increased linker flexibility and disrupted the charge network. A number of post-translational adducts showed structural disruption around Cys15 and increased linker flexibility; this may be important in subsequent protein aggregation. Our modelling results are in accord with experimental evidence, and show that ED/MD is a useful tool in modelling conformational changes in proteins implicated in disease processes. (C) 2003 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The iron oxyallyl carbocation generated from 2,7-dibromocycloheptanone was induced to undergo [4 + 3] cycloaddition reactions with various furans, affording a series of 12-oxatricyclo-[4.4.1.1(2,5)]-dodec-3-en-11-one adducts. Similar methodology was used to prepare two additional cycloadducts using menthofuran and two homologous aliphatic dibromoketones. Dipolar cycloaddition of ozone to the adducts afforded the corresponding secondary ozonides (i.e., 1,2,4-trioxolanes) in variable yields. Ozonides were investigated by quantum mechanics at the B3LYP/6-31+G* level to study structural features including close contacts which may be responsible for enhancing ozonide stability. The effect of these ozonides and their corresponding precursor cycloadducts upon radicle growth of both Sorghum bicolor and Cucumis sativus was evaluated at 5.0 x 10(-4) mol L-1. The most active cycloadducts and ozonides were also evaluated against the weed species Ipomoea grandifolia and Brachiaria decumbens, and the results are discussed. Compared to ozonides previously synthesized in our laboratory, the new ozonides described herein present improved plant growth regulatory activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

UV absorption spectra of five methyl-substituted hydroxy-cyclohexadienyl radicals, formed by the addition of the hydroxyl radical (OH) to toluene (methyl benzene), o-, m- and p-xylene (1,2-, 1,3- and 1,4-dimethyl benzene, respectively) and mesitylene (1,3,5-trimethylbenzene), have been determined at 298 K, 1 atm pressure (N-2 + O-2), and the corresponding absolute absorption cross-sections measured, using laser flash photolysis and time-resolved UV absorption detection. As observed for other cyclohexadienyl-type radicals, a strong absorption band is present in the 260-340 nm spectral region, with maximum cross-sections in the range (0.9-2.2) x 10(-17) cm(2) molecule(-1). The shape of the band varies significantly from one radical to the next for the series of aromatic precursors investigated. The nature and yields of hydroxylated ring-retaining oxidation products, identified in previous studies of the OH-initiated oxidation of aromatic hydrocarbons, and the results of theoretical density functional theory (DFT) calculations indicate that one or more possible isomers of the various OH-adducts may contribute to the observed spectra. Isomers where the OH-group is ortho- (or both ortho- and ipso-) to a substituent methyl-group are likely to be the most abundant but other isomers may also be formed to a significant extent. Nonetheless, the present study provides absorption spectra of the adduct radicals formed from the gas phase addition of OH to the aromatic hydrocarbons considered, near room temperature and I atm pressure. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of multicarboxylic acid appended imidazolium ionic liquids ( McaILs) with chloride [ Cl](-) or bromide [ Br](-) as anions have been synthesized and characterized. Deprotonation of these ionic acids gives the corresponding zwitterions. Re-protonation of the zwitterions with strong Bronsted acids gives a series of new ionic acid-adducts, many of which remained as room-temperature ionic liquids. A new catalytic system, McaIL/PdCl2 for the selective catalytic oxidation of styrene to acetophenone with hydrogen peroxide as an oxidant has been attempted. In the presence of McaILs, it is found that the quantity of palladium chloride PdCl2 used can be greatly reduced while the activity ( TOF) and selectivity towards acetophenone are enhanced sharply. It is also shown that the catalytic properties of this system could be finely tuned through the molecular design of the McaILs. The best TOF value obtained so far is 146 h(-1) with 100% conversion of styrene at 93% selectivity to acetophenone. In addition, the catalytic activity has been maintained for at least ten catalytic cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A general approach for the synthesis of fused cyclic systems containing medium-sized rings (7-9) has been developed. The key steps involve a diastereoface-selective Diels-Alder reaction of the dienophiles 4a-d attached to a furanosugar with cyclopentadiene and ring opening (ROM)-ring closing metathesis (RCM) of the resulting norbornene derivatives 10a-d and 11a-d. Diels-Alder reaction of the dienophiles 4a-d with cyclopentadiene in the absence of a catalyst produced 10a-d as the major product arising through addition of the diene to the unhindered Si-face. The most interesting and new aspect of the Diels-Alder reaction of these dienophiles is the accessibility of the Re-face that was blocked by the alkenyl chains under Lewis acid catalysis producing the diastereoisomers 11a-d exclusively. The reversal of facial selectivity from an uncatalyzed reaction to a catalyzed one is unprecedented. The observed stereochemical dichotomy is attributed to rotation of the enone moiety along the or bond linking the sugar moiety during formation of the chelate 13. This makes the Re-face of the enone moiety in 4a-d unhindered. Diels-Alder reaction of the carbocyclic analogue 15 under Lewis acid catalysis produced a 1: 1 mixture of the adducts 16 and 17 confirming the participation of sugar ring oxygen in chelate formation. Finally ROM-RCM of 10a-d and 11a-d with Grubbs' catalyst afforded the cis-syn-cis and cis-anti-cis bicyclo-annulated sugars 21a-d and 23a-d, respectively, containing 7-9 membered rings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The death of nigral neurons in Parkinson's disease is thought to involve the formation of the endogenous neurotoxin, 5-S-cysteinyl-dopamine. In the present study, we show that the polyphenols, (+)-catechin and caffeic acid, which contain a catechol moiety, inhibit tyrosinase-induced formation of 5-S-eysteinyl-dopamine via their capacity to undergo tyro sina se-induced oxidation to yield cysteinyl-polyphenol adducts. In contrast, the inhibition afforded by the flavanone, hesperetin, was not accompanied by the formation of cysteinyl-hesperetin adducts, indicating that it may inhibit via direct interaction with tyrosinase. Whilst the stilbene resveratrol also inhibited 5-S-eysteinyl-dopamine formation, this was accompanied by the formation of dihydrobenzothiazine, a strong neurotoxin. Our data indicate that the inhibitory effects of polyphenols against 5-S-cysteinyl-dopamine formation are structure-dependent and shed further light on the mechanisms by which polyphenols exert protection against neuronal injury relevant to neurodegenerative diseases. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of cancer in humans and animals is a multistep process. The complex series of cellular and molecular changes participating in cancer development are mediated by a diversity of endogenous and exogenous stimuli. One type of endogenous damage is that arising from intermediates of oxygen (dioxygen) reduction - oxygen-free radicals (OFR), which attacks not only the bases but also the deoxyribosyl backbone of DNA. Thanks to improvements in analytical techniques, a major achievement in the understanding of carcinogenesis in the past two decades has been the identification and quantification of various adducts of OFR with DNA. OFR are also known to attack other cellular components such as lipids, leaving behind reactive species that in turn can couple to DNA bases. Endogenous DNA lesions are genotoxic and induce mutations. The most extensively studied lesion is the formation of 8-OH-dG. This lesion is important because it is relatively easily formed and is mutagenic and therefore is a potential biomarker of carcinogenesis. Mutations that may arise from formation of 8-OH-dG involve GC. TA transversions. In view of these findings, OFR are considered as an important class of carcinogens. The effect of OFR is balanced by the antioxidant action of non-enzymatic antioxidants as well as antioxidant enzymes. Non-enzymatic antioxidants involve vitamin C, vitamin E, carotenoids (CAR), selenium and others. However, under certain conditions, some antioxidants can also exhibit a pro-oxidant mechanism of action. For example, beta-carotene at high concentration and with increased partial pressure of dioxygen is known to behave as a pro-oxidant. Some concerns have also been raised over the potentially deleterious transition metal ion-mediated (iron, copper) pro-oxidant effect of vitamin C. Clinical studies mapping the effect of preventive antioxidants have shown surprisingly little or no effect on cancer incidence. The epidemiological trials together with in vitro experiments suggest that the optimal approach is to reduce endogenous and exogenous sources of oxidative stress, rather than increase intake of anti-oxidants. In this review, we highlight some major achievements in the study of DNA damage caused by OFR and the role in carcinogenesis played by oxidatively damaged DNA. The protective effect of antioxidants against free radicals is also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Possible evidence is presented for Maillard glycation of enzymes during oligosaccharide synthesis by reverse hydrolysis. In 70% (w/v) mannose solutions, 1,2-alpha-mannosidase from Penicillium citrinum lost 40% and alpha-mannosidase from almonds lost 60% activity at 55 degreesC over 2 weeks. Oligosaccharide yields were 15 and 45% respectively. Higher molecular weight glycation adducts were formed in a time-dependent manner as seen by MALDI-TOF. Inhibitors of the Maillard. reaction were able to partially alleviate these effects resulting in reduced loss of enzyme activity and oligosaccharide yield increases of 27-53% relative to the control. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acrylamide and pyrazine formation, as influenced by the incorporation of different amino acids, was investigated in sealed low-moisture asparagine-glucose model systems. Added amino acids, with the exception of glycine and cysteine and at an equimolar concentration to asparagine, increased the rate of acrylamide formation. The strong correlation between the unsubstituted pyrazine and acrylamide suggests the promotion of the formation of Maillard reaction intermediates, and in particular glyoxal, as the determining mode of-action. At increased amino acid concentrations, diverse effects were observed. The initial rates of acrylamide formation remained high for valine, alanine, phenylalanine, tryptophan, glutamine, and Ieucine, while a significant mitigating effect, as evident from the acrylamide yields after 60 min of heating at 160 degrees C, was observed for proline, tryptophan, glycine, and cysteine. The secondary amine containing amino acids, proline and tryptophan, had the most profound mitigating effect on acrylamide after 60 min of heating. The relative importance of the competing effect of added amino acids for alpha-dicarbonyls and acrylamide-amino, acid alkylation reactions is discussed and accompanied by data on the relative formation rates of selected amino acid-AA adducts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteomic analysis using electrospray liquid chromatography-mass spectrometry (ESI-LC-MS) has been used to compare the sites of glycation (Amadori adduct formation) and carboxymethylation of RNase and to assess the role of the Amadori adduct in the formation of the advanced glycation end-product (AGE), N-is an element of-(carboxymethyl)lysine (CIVIL). RNase (13.7 mg/mL, 1 mM) was incubated with glucose (0.4 M) at 37 degreesC for 14 days in phosphate buffer (0.2 M, pH 7.4) under air. On the basis of ESI-LC-MS of tryptic peptides, the major sites of glycation of RNase were, in order, K41, K7, K1, and K37. Three of these, in order, K41, K7, and K37 were also the major sites of CIVIL formation. In other experiments, RNase was incubated under anaerobic conditions (1 mM DTPA, N-2 purged) to form Amadori-modified protein, which was then incubated under aerobic conditions to allow AGE formation. Again, the major sites of glycation were, in order, K41, K7, K1, and K37 and the major sites of carboxymethylation were K41, K7, and K37. RNase was also incubated with 1-5 mM glyoxal, substantially more than is formed by autoxidation of glucose under experimental conditions, but there was only trace modification of lysine residues, primarily at K41. We conclude the following: (1) that the primary route to formation of CIVIL is by autoxidation of Amadori adducts on protein, rather than by glyoxal generated on autoxidation of glucose; and (2) that carboxymethylation, like glycation, is a site-specific modification of protein affected by neighboring amino acids and bound ligands, such as phosphate or phosphorylated compounds. Even when the overall extent of protein modification is low, localization of a high proportion of the modifications at a few reactive sites might have important implications for understanding losses in protein functionality in aging and diabetes and also for the design of AGE inhibitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: In recent years the use of anthraquinone laxatives, in particular senna, has been associated with damage to the intestinal epithelial layer and an increased risk of developing colorectal cancer. In the present study we evaluated the cytotoxicity of rhein, the active metabolite of senna, on human colon adenocarcinoma cells (Caco-2) and its effect on cell proliferation. Methods: Cytotoxicity studies were performed using MTT, NR and TEER assays whereas 3H-thymidine incorporation and western blot analysis were used to evaluate the effect of rhein on cell proliferation. Moreover, for genoprotection studies Comet assay and oxidative biomarkers measurement (malondialdehyde and reactive oxygen species) were used. Results: Rhein (0.1-10μg/ml) had no significant cytotoxic effect on proliferating and differentiated Caco-2 cells. Rhein (0.1 and 1 μg/ml) significantly reduced cell proliferation as well as MAP kinase activation; by contrast, at the high concentration (10μg/ml) rhein significantly increased cell proliferation and ERK phosphorylation. Moreover, rhein (0.1-10μg/ml) (i) did not adversely affect the integrity of tight junctions and hence epithelial barrier function, (ii) did not induce DNA damage rather it was able to reduce H2O2-induced DNA damage and (iii) significantly inhibited the increase in malondialdehyde and ROS levels induced by H2O2/Fe2+. Conclusions: Rhein, was devoid of cytotoxic and genotoxic effects in colon adenocarcinoma cells. Moreover, at concentrations present in the colon after a human therapeutic dosage of senna, rhein inhibited cell proliferation via a mechanism which seems to involve directly the MAP kinase pathway. Finally, rhein prevents the DNA damage probably via an anti-oxidant mechanism.