20 resultados para Méchanismes neuro-intégratifs
Resumo:
Emerging evidence suggests that dietary-derived flavonoids have the potential to improve human memory and neuro-cognitive performance via their ability to protect vulnerable neurons, enhance existing neuronal function and stimulate neuronal regeneration. Long-term potentiation (LTP) is widely considered to be one of the major mechanisms underlying memory acquisition, consolidation and storage in the brain and is known to be controlled at the molecular level by the activation of a number of neuronal signalling pathways. These pathways include the phosphatidylinositol-3 kinase/protein kinase B/Akt (Akt), protein kinase C, protein kinase A, Ca-calmodulin kinase and mitogen-activated protein kinase pathways. Growing evidence suggests that flavonoids exert effects on LTP, and consequently memory and cognitive performance, through their interactions with these signalling pathways. Of particular interest is the ability of flavonoids to activate the extracellular signal-regulated kinase and the Akt signalling pathways leading to the activation of the cAMP-response element-binding protein, a transcription factor responsible for increasing the expression of a number of neurotrophins important in LTP and long-term memory. One such neurotrophin is brain-derived neurotrophic factor, which is known to be crucial in controlling synapse growth, in promoting an increase in dendritic spine density and in enhancing synaptic receptor density. The present review explores the potential of flavonoids and their metabolite forms to promote memory and learning through their interactions with neuronal signalling pathways pivotal in controlling LTP and memory in human subjects.
Resumo:
This paper presents the Gentle/G integrated system for reach & grasp therapy retraining following brain injury. The design, control and integration of an experimental grasp assistance unit is described for use in robot assisted stroke rehabilitation. The grasp assist unit is intended to work with the hardware and software of the Gentle/S robot although the hardware could be adapted to other rehabilitation applications. When used with the Gentle/S robot a total of 6 active and 3 passive degrees of freedom are available to provide active, active assist or passive grasp retraining in combination with reaching movements in a reach-grasp-transfer-release sequence.
Resumo:
In this study a minimum variance neuro self-tuning proportional-integral-derivative (PID) controller is designed for complex multiple input-multiple output (MIMO) dynamic systems. An approximation model is constructed, which consists of two functional blocks. The first block uses a linear submodel to approximate dominant system dynamics around a selected number of operating points. The second block is used as an error agent, implemented by a neural network, to accommodate the inaccuracy possibly introduced by the linear submodel approximation, various complexities/uncertainties, and complicated coupling effects frequently exhibited in non-linear MIMO dynamic systems. With the proposed model structure, controller design of an MIMO plant with n inputs and n outputs could be, for example, decomposed into n independent single input-single output (SISO) subsystem designs. The effectiveness of the controller design procedure is initially verified through simulations of industrial examples.
Resumo:
Movement disorders (MD) include a group of neurological disorders that involve neuromotor systems. MD can result in several abnormalities ranging from an inability to move, to severe constant and excessive movements. Strokes are a leading cause of disability affecting largely the older people worldwide. Traditional treatments rely on the use of physiotherapy that is partially based on theories and also heavily reliant on the therapists training and past experience. The lack of evidence to prove that one treatment is more effective than any other makes the rehabilitation of stroke patients a difficult task. UL motor re-learning and recovery levels tend to improve with intensive physiotherapy delivery. The need for conclusive evidence supporting one method over the other and the need to stimulate the stroke patient clearly suggest that traditional methods lack high motivational content, as well as objective standardised analytical methods for evaluating a patient's performance and assessment of therapy effectiveness. Despite all the advances in machine mediated therapies, there is still a need to improve therapy tools. This chapter describes a new approach to robot assisted neuro-rehabilitation for upper limb rehabilitation. Gentle/S introduces a new approach on the integration of appropriate haptic technologies to high quality virtual environments, so as to deliver challenging and meaningful therapies to people with upper limb impairment in consequence of a stroke. The described approach can enhance traditional therapy tools, provide therapy "on demand" and can present accurate objective measurements of a patient's progression. Our recent studies suggest the use of tele-presence and VR-based systems can potentially motivate patients to exercise for longer periods of time. Two identical prototypes have undergone extended clinical trials in the UK and Ireland with a cohort of 30 stroke subjects. From the lessons learnt with the Gentle/S approach, it is clear also that high quality therapy devices of this nature have a role in future delivery of stroke rehabilitation, and machine mediated therapies should be available to patient and his/her clinical team from initial hospital admission, through to long term placement in the patient's home following hospital discharge.
Resumo:
The classical computer vision methods can only weakly emulate some of the multi-level parallelisms in signal processing and information sharing that takes place in different parts of the primates’ visual system thus enabling it to accomplish many diverse functions of visual perception. One of the main functions of the primates’ vision is to detect and recognise objects in natural scenes despite all the linear and non-linear variations of the objects and their environment. The superior performance of the primates’ visual system compared to what machine vision systems have been able to achieve to date, motivates scientists and researchers to further explore this area in pursuit of more efficient vision systems inspired by natural models. In this paper building blocks for a hierarchical efficient object recognition model are proposed. Incorporating the attention-based processing would lead to a system that will process the visual data in a non-linear way focusing only on the regions of interest and hence reducing the time to achieve real-time performance. Further, it is suggested to modify the visual cortex model for recognizing objects by adding non-linearities in the ventral path consistent with earlier discoveries as reported by researchers in the neuro-physiology of vision.
Resumo:
Evidence Suggests that a group of phytochemicals known as flavonoids are highly effective in reversing age-related declines in neuro-cognitive performance through their ability to interact with the cellular and molecular architecture of the brain responsible for memory and by reducing neuronal loss due to neurodegenerative Processes. In particular, they may increase the number of, and strength of, connections between neurons, via their specific interactions with the ERK and Akt signalling pathways, leading to an increase in neurotrophins Such as BDNF. Concurrently, their effects on the peripheral and Cerebral vascular system may also lead to enhancements in cognitive performance through increased brain blood flow and an ability to initiate neurogenesis in the hippocampus. Finally, they have also been shown to reduce neuronal damage and losses induced by various neurotoxic species and neuroinflammation. Together, these processes act to maintain the number and quality of synaptic connections in the brain. a factor known to be essential for efficient LTP, synaptic plasticity and ultimately the efficient working of memory. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Despite ample research into the language skills of children with specific reading disorder no studies so far have investigated whether there may be a difference between expressive and receptive language skills in this population. Yet, neuro-anatomical models would predict that children who have specific reading disorder which is not associated with movement or attention difficulties, would have lower receptive language skills than expressive. This study investigates the difference between expressive and receptive language skills in a sample of 17 children with specific reading difficulty aged between 7 and 12 years. They were administered a battery of two receptive and two expressive language measures. The results showed that as the neuro-anatomical model would predict, the children scored significantly lower on tests of receptive than on tests of expressive language skills.
Resumo:
Background: Previous research suggests that the phenotype associated with Asperger's syndrome (AS) includes difficulties in understanding the mental states of others, leading to difficulties in social communication and social relationships. It has also been suggested that the first-degree relatives of those with AS can demonstrate similar difficulties, albeit to a lesser extent. This study examined 'theory of mind' (ToM) abilities in the siblings of children with AS relative to a matched control group. Method: 2 7 children who had a sibling with AS were administered the children's version of the 'Eyes Test'(Baron-Cohen, Wheelwright, Stone, & Rutherford, 1999). The control group consisted of 27 children matched for age, sex, and a measure of verbal comprehension, and who did not have a family history of AS/autism. Results: A significant difference was found between the groups on the Eyes Test, the 'siblings' group showing a poorer performance on this measure of social cognition. The difference was more pronounced among female siblings. Discussion: These results are discussed in terms of the familial distribution of a neuro-cognitive profile associated with AS, which confers varying degrees of social handicap amongst first-degree relatives. The implication of this finding with regard to the autism/AS phenotype is explored, with some discussion of why this neuro-cognitive profile (in combination with corresponding strengths) may have an evolutionary imperative.
Resumo:
This study investigates the human response to impulse perturbations at the midpoint of a haptically-guided straight-line point-to-point movement. Such perturbation response may be used as an assessment tool during robot-mediated neuro-rehabilitation therapy. Subjects show variety in their perturbation responses. Movements with a lower perturbation displacement exhibit high frequency oscillations, indicative of increased joint stiffness. Equally, movements with a high perturbation displacement exhibit lower frequency oscillations with higher amplitude and a longer settling time. Some subjects show unexpected transients during the perturbation impulse, which may be caused by complex joint interactions in the hand and arm.
Resumo:
Stroke is a leading cause of disability in particular affecting older people. Although the causes of stroke are well known and it is possible to reduce these risks, there is still a need to improve rehabilitation techniques. Early studies in the literature suggest that early intensive therapies can enhance a patient's recovery. According to physiotherapy literature, attention and motivation are key factors for motor relearning following stroke. Machine mediated therapy offers the potential to improve the outcome of stroke patients engaged on rehabilitation for upper limb motor impairment. Haptic interfaces are a particular group of robots that are attractive due to their ability to safely interact with humans. They can enhance traditional therapy tools, provide therapy "on demand" and can present accurate objective measurements of a patient's progression. Our recent studies suggest the use of tele-presence and VR-based systems can potentially motivate patients to exercise for longer periods of time. The creation of human-like trajectories is essential for retraining upper limb movements of people that have lost manipulation functions following stroke. By coupling models for human arm movement with haptic interfaces and VR technology it is possible to create a new class of robot mediated neuro rehabilitation tools. This paper provides an overview on different approaches to robot mediated therapy and describes a system based on haptics and virtual reality visualisation techniques, where particular emphasis is given to different control strategies for interaction derived from minimum jerk theory and the aid of virtual and mixed reality based exercises.
Resumo:
A neural network enhanced proportional, integral and derivative (PID) controller is presented that combines the attributes of neural network learning with a generalized minimum-variance self-tuning control (STC) strategy. The neuro PID controller is structured with plant model identification and PID parameter tuning. The plants to be controlled are approximated by an equivalent model composed of a simple linear submodel to approximate plant dynamics around operating points, plus an error agent to accommodate the errors induced by linear submodel inaccuracy due to non-linearities and other complexities. A generalized recursive least-squares algorithm is used to identify the linear submodel, and a layered neural network is used to detect the error agent in which the weights are updated on the basis of the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model, and therefore the error agent is naturally functioned within the control law. In this way the controller can deal not only with a wide range of linear dynamic plants but also with those complex plants characterized by severe non-linearity, uncertainties and non-minimum phase behaviours. Two simulation studies are provided to demonstrate the effectiveness of the controller design procedure.
Resumo:
A connection between a fuzzy neural network model with the mixture of experts network (MEN) modelling approach is established. Based on this linkage, two new neuro-fuzzy MEN construction algorithms are proposed to overcome the curse of dimensionality that is inherent in the majority of associative memory networks and/or other rule based systems. The first construction algorithm employs a function selection manager module in an MEN system. The second construction algorithm is based on a new parallel learning algorithm in which each model rule is trained independently, for which the parameter convergence property of the new learning method is established. As with the first approach, an expert selection criterion is utilised in this algorithm. These two construction methods are equivalent in their effectiveness in overcoming the curse of dimensionality by reducing the dimensionality of the regression vector, but the latter has the additional computational advantage of parallel processing. The proposed algorithms are analysed for effectiveness followed by numerical examples to illustrate their efficacy for some difficult data based modelling problems.