33 resultados para Lateral bipolar junction transistors
Resumo:
Background Evidence suggests a reversal of the normal left-lateralised response to speech in schizophrenia. Aims To test the brain's response to emotional prosody in schizophrenia and bipolar disorder. Method BOLD contrast functional magnetic resonance imaging of subjects while they passively listened or attended to sentences that differed in emotional prosody Results Patients with schizophrenia exhibited normal right-lateralisation of the passive response to 'pure' emotional prosody and relative left-lateralisation of the response to unfiltered emotional prosody When attending to emotional prosody, patients with schizophrenia activated the left insula more than healthy controls. When listening passively, patients with bipolar disorder demonstrated less activation of the bilateral superior temporal gyri in response to pure emotional prosody, and greater activation of the left superior temporal gyrus in response to unfiltered emotional prosody In both passive experiments, the patient groups activated different lateral temporal lobe regions. Conclusions Patients with schizophrenia and bipolar disorder may display some left-lateralisation of the normal right-lateralised temporal lobe response to emotional prosody. Declaration of interest R.M. received a studentship from Neuraxis,, and funding from the Neuroscience and Psychiatry Unit, University of Manchester.
Resumo:
In the rodent forebrain GABAergic neurons are generated from progenitor cells that express the transcription factors Dlx1 and Dlx2. The Rap-1 guanine nucleotide exchange factor, MR-GEF, is turned on by many of these developing GABAergic neurons. Expression of both Dlx1/2 and MR-GEF is retained in both adult mouse and human forebrain where, in human, decreased Dlx1 expression has been associated with psychosis. Using in situ hybridization studies we show that MR-GEF expression is significantly down-regulated in the forebrain of Dlx1/2 double mutant mice suggesting that MR-GEF and Dlx1/2 form part of a common signalling pathway during GABAergic neuronal development. We therefore compared MR-GEF expression by in situ hybridization in individuals with major psychiatric disorders (schizophrenia, bipolar disorder, major depression) and control individuals. We observed a significant positive correlation between layers II and IV of the dorso-lateral prefrontal cortex (DLPFC) in the percentage of MR-GEF expressing neurons in individuals with bipolar disorder, but not in individuals with schizophrenia, major depressive disorder or in controls. Since MR-GEF encodes a Rap1 GEF able to activate G-protein signalling, we suggest that changes in MR-GEF expression could potentially influence neurotransmission.
Resumo:
A bipolar air conductivity instrument is described for use with a standard disposable meteorological radiosonde package. It is intended to provide electrical measurements at cloud boundaries, where the ratio of the bipolar air conductivities is affected by the presence of charged particles. The sensors are two identical Gerdien-type electrodes, which, through a voltage decay method, measure positive and negative air conductivities simultaneously. Voltage decay provides a thermally stable approach and a novel low current leakage electrometer switch is described which initiates the decay sequence. The radiosonde supplies power and telemetry, as well as measuring simultaneous meteorological data. A test flight using a tethered balloon determined positive (σ+) and negative (σ−) conductivities of σ+ = 2.77±0.2 fS m−1 and σ− = 2.82±0.2 fS m−1, respectively, at 400 m aloft, with σ+/σ− = 0.98±0.04.
Resumo:
The paper describes a field study focused on the dispersion of a traffic-related pollutant within an area close to a busy intersection between two street canyons in Central London. Simultaneous measurements of airflow, traffic flow and carbon monoxide concentrations ([CO]) are used to explore the causes of spatial variability in [CO] over a full range of background wind directions. Depending on the roof-top wind direction, evidence of both flow channelling and recirculation regimes were identified from data collected within the main canyon and the intersection. However, at the intersection, the merging of channelled flows from the canyons increased the flow complexity and turbulence intensity. These features, coupled with the close proximity of nearby queuing traffic in several directions, led to the highest overall time-average measured [CO] occurring at the intersection. Within the main street canyon, the data supported the presence of a helical flow regime for oblique roof-top flows, leading to increased [CO] on the canyon leeward side. Predominant wind directions led to some locations having significantly higher diurnal average [CO] due to being mostly on the canyon leeward side during the study period. For all locations, small changes in the background wind direction could cause large changes in the in-street mean wind angle and local turbulence intensity, implying that dispersion mechanisms would be highly sensitive to small changes in above roof flows. During peak traffic flow periods, concentrations within parallel side streets were approximately four times lower than within the main canyon and intersection which has implications for controlling personal exposure. Overall, the results illustrate that pollutant concentrations can be highly spatially variable over even short distances within complex urban geometries, and that synoptic wind patterns, traffic queue location and building topologies all play a role in determining where pollutant hot spots occur.
Resumo:
Here, we identify the Arabidopsis thaliana ortholog of the mammalian DEAD box helicase, eIF4A-III, the putative anchor protein of exon junction complex (EJC) on mRNA. Arabidopsis eIF4A-III interacts with an ortholog of the core EJC component, ALY/Ref, and colocalizes with other EJC components, such as Mago, Y14, and RNPS1, suggesting a similar function in EJC assembly to animal eIF4A-III. A green fluorescent protein (GFP)-eIF4A-III fusion protein showed localization to several subnuclear domains: to the nucleoplasm during normal growth and to the nucleolus and splicing speckles in response to hypoxia. Treatment with the respiratory inhibitor sodium azide produced an identical response to the hypoxia stress. Treatment with the proteasome inhibitor MG132 led to accumulation of GFP-eIF4A-III mainly in the nucleolus, suggesting that transition of eIF4A-III between subnuclear domains and/or accumulation in nuclear speckles is controlled by proteolysis-labile factors. As revealed by fluorescence recovery after photobleaching analysis, the nucleoplasmic fraction was highly mobile, while the speckles were the least mobile fractions, and the nucleolar fraction had an intermediate mobility. Sequestration of eIF4A-III into nuclear pools with different mobility is likely to reflect the transcriptional and mRNA processing state of the cell.
Resumo:
The sensitivity of the upper ocean thermal balance of an ocean-atmosphere coupled GCM to lateral ocean physics is assessed. Three 40-year simulations are performed using horizontal mixing, isopycnal mixing, and isopycnal mixing plus eddy induced advection. The thermal adjustment of the coupled system is quite different between the simulations, confirming the major role of ocean mixing on the heat balance of climate. The initial adjustment phase of the upper ocean (SST) is used to diagnose the physical mechanisms involved in each parametrisation. When the lateral ocean physics is modified, significant changes of SST are seen, mainly in the southern ocean. A heat budget of the annual mixed layer (defined as the “bowl”) shows that these changes are due to a modified heat transfer between the bowl and the ocean interior. This modified heat intake of the ocean interior is directly due to the modified lateral ocean physics. In isopycnal diffusion, this heat exchange, especially marked at mid-latitudes, is both due to an increased effective surface of diffusion and to the sign of the isopycnal gradients of temperature at the base of the bowl. As this gradient is proportional to the isopycnal gradient of salinity, this confirms the strong role of salinity in the thermal balance of the coupled system. The eddy induced advection also leads to increased exchanges between the bowl and the ocean interior. This is both due to the shape of the bowl and again to the existence of a salinity structure. The lateral ocean physics is shown to be a significant contributor to the exchanges between the diabatic and the adiabatic parts of the ocean.
Resumo:
Tethered films of polystyrene-block-poly(methyl methacrylate) copolymers of varying composition and molecular weight were investigated using atomic force microscopy and the observed structures compared with theoretical predictions. Although the experimental results were in qualitative agreement with the theory, there was significant quantitative variation. This was attributed to the presence of solvent in the films prior to and during annealing, a hypothesis supported by new preliminary calculations reported here. Solvent exchange experiments (where a good solvent for both polymer blocks was gradually replaced by a selective solvent), were also performed on the films. This procedure generated textured films in which the structure was defined by miscibility of the polymer blocks with the second solvent.
Resumo:
Planning a Holliday: A new mode of binding to a stacked-X, four-way Holliday junction is described in which a chromophore molecule binds across the center of the junction and two adenine residues are replaced by the acridine chromophores at either side of the crossover. This binding mode is specific for the Holliday junction and does not cause unwinding of the DNA helices.
Resumo:
The role of metal ions in determining the solution conformation of the Holliday junction is well established, but to date the picture of metal ion binding from structural studies of the four-way DNA junction is very incomplete. Here we present two refined structures of the Holliday junction formed by the sequence d(TCGGTACCGA) in the presence of Na+ and Ca2+, and separately with Sr2+ to resolutions of 1.85 Angstrom and 1.65 Angstrom, respectively. This sequence includes the ACC core found to promote spontaneous junction formation, but its structure has not previously been reported. Almost complete hydration spheres can be defined for each metal cation. The Na+ sites, the most convincing observation of such sites in junctions to date, are one on either face of the junction crossover region, and stabilise the ordered hydration inside the junction arms. The four Ca2+ sites in the same structure are at the CG/CG steps in the minor groove. The Sr2+ ions occupy the TC/AG, GG/CC, and TA/TA sites in the minor groove, giving ten positions forming two spines of ions, spiralling through the minor grooves within each arm of the stacked-X structure. The two structures were solved in the two different C2 lattices previously observed, with the Sr2+ derivative crystallising in the more highly symmetrical form with two-fold symmetry at its centre. Both structures show an opening of the minor groove face of the junction of 8.4degrees in the Ca2+ and Na+ containing structure, and 13.4degrees in the Sr2+ containing structure. The crossover angles at the junction are 39.3degrees and 43.3degrees, respectively. In addition to this, a relative shift in the base pair stack alignment of the arms of 2.3 Angstrom is observed for the Sr2+ containing structure only. Overall these results provide an insight into the so-far elusive stabilising ion structure for the DNA Holliday junction. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The mechanism of active stress generation in tension wood is still not fully understood. To characterize the functional interdependency between the G-layer and the secondary cell wall, nanostructural characterization and mechanical tests were performed on native tension wood tissues of poplar (Populus nigra x Populus deltoids) and on tissues in which the G-layer was removed by an enzymatic treatment. In addition to the well-known axial orientation of the cellulose fibrils in the G-layer, it was shown that the microfibril angle of the S2-layer was very large (about 36 degrees). The removal of the G-layer resulted in an axial extension and a tangential contraction of the tissues. The tensile stress-strain curves of native tension wood slices showed a jagged appearance after yield that could not be seen in the enzyme-treated samples. The behaviour of the native tissue was modelled by assuming that cells deform elastically up to a critical strain at which the G-layer slips, causing a drop in stress. The results suggest that tensile stresses in poplar are generated in the living plant by a lateral swelling of the G-layer which forces the surrounding secondary cell wall to contract in the axial direction.
Resumo:
Direct measurement of strain field in a mechanically loaded Norway spruce branch-stem junction was performed by means of electronic speckle pattern analysis. Results were compared with strain distribution in a polyester cast of identical shape as the branch-stem junction, and a simplified polyester model consisting of two half-cylinders. Compared to polyester models, the branch-stem junction was characterised by a very homogeneous distribution of strain, which can be interpreted as a homogeneous distribution of stress in terms of fraction of material strength. This optimised transfer of mechanical load from the branch to the stem is achieved by a combination of naturally optimised shape with, additionally, optimised mechanical wood properties in the junction area.
Resumo:
We explored the dependency of the saccadic remote distractor effect (RDE) on the spatial frequency content of target and distractor Gabor patches. A robust RDE was obtained with low-medium spatial frequency distractors, regardless of the spatial frequency of the tat-get. High spatial frequency distractors interfered to a similar extent when the target was of the same spatial frequency. We developed a quantitative model based on lateral inhibition within an oculomotor decision unit. This lateral inhibition mechanism cannot account for the interaction observed between target and distractor spatial frequency, pointing to the existence of channel interactions at an earlier level. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This paper assesses the potential for using building integrated photovoltaic (BIPV) roof shingles made from triple-junction amorphous silicon (3a-Si) for electrification and as a roofing material in tropical countries, such as Accra, Ghana. A model roof was constructed using triple-junction amorphous (3a-Si) PV on one section and conventional roofing tiles on the other. The performance of the PV module and tiles were measured, over a range of ambient temperatures and solar irradiance. PVSyst (a computer design software) was used to determine the most appropriate angle of tilt. It was observed that 3a-Si performs well in conditions such as Accra, because it is insensitive to high temperatures. Building integration gives security benefits, and reduces construction costs and embodied energy, compared to freestanding PV systems. Again, it serves as a means of protection from salt spray from the oceans and works well even when shaded. However, compared to conventional roofing materials, 3a-Si would increase the indoor temperature by 1-2 °C depending on the surface area of the roof covered with the PV modules. The results presented in this research enhance the understanding of varying factors involved in the selection of an appropriate method of PV installation to offset the short falls of the conventional roofing material in Ghana.
Resumo:
Gene compensation by members of the myogenic regulatory factor (MRF) family has been proposed to explain the apparent normal adult phenotype of MyoD(-/-) mice. Nerve and field stimulation were used to investigate contraction properties of muscle from MyoD(-/-) mice, and molecular approaches were used to investigate satellite-cell behavior. We demonstrate that MyoD deletion results in major alterations in the organization of the neuromuscular junction, which have a dramatic influence on the physiological contractile properties of skeletal muscle. Second, we show that the lineage progression of satellite cells (especially initial proliferation) in the absence of MyoD is abnormal and linked to perturbations in the nuclear localization of beta-catenin, a key readout of canonical Wnt signaling. These results show that MyoD has unique functions in both developing and adult skeletal muscle that are not carried out by other members of the MRF family.
Resumo:
In vertebrates, body musculature originates from somites, whereas head muscles originate from the cranial mesoderm. Neck muscles are located in the transition between these regions. We show that the chick occipital lateral plate mesoderm has myogenic capacity and gives rise to large muscles located in the neck and thorax. We present molecular and genetic evidence to show that these muscles not only have a unique origin, but additionally display a distinct temporal development, forming later than any other muscle group described to date. We further report that these muscles, found in the body of the animal, develop like head musculature rather than deploying the programme used by the trunk muscles. Using mouse genetics we reveal that these muscles are formed in trunk muscle mutants but are absent in head muscle mutants. In concordance with this conclusion, their connective tissue is neural crest in origin. Finally, we provide evidence that the mechanism by which these neck muscles develop is conserved in vertebrates.