22 resultados para Java bytecodes
Resumo:
MPJ Express is a thread-safe Java messaging library that provides a full implementation of the mpiJava 1.2 API specification. This specification defines a MPI-like bindings for the Java language. We have implemented two communication devices as part of our library, the first, called niodev is based on the Java New I/O package and the second, called mxdev is based on the Myrinet eXpress library MPJ Express comes with an experimental runtitne, which allows portable bootstrapping of Java Virtual Machines across a cluster or network of computers. In this paper we describe the implementation of MPJ Express. Also, we present a performance comparison against various other C and Java messaging systems. A beta version of MPJ Express was released in September 2005.
Resumo:
The Java language first came to public attention in 1995. Within a year, it was being speculated that Java may be a good language for parallel and distributed computing. Its core features, including being objected oriented and platform independence, as well as having built-in network support and threads, has encouraged this view. Today, Java is being used in almost every type of computer-based system, ranging from sensor networks to high performance computing platforms, and from enterprise applications through to complex research-based.simulations. In this paper the key features that make Java a good language for parallel and distributed computing are first discussed. Two Java-based middleware systems, namely MPJ Express, an MPI-like Java messaging system, and Tycho, a wide-area asynchronous messaging framework with an integrated virtual registry are then discussed. The paper concludes by highlighting the advantages of using Java as middleware to support distributed applications.
Resumo:
Gadget-2 is a massively parallel structure formation code for cosmological simulations. In this paper, we present a Java version of Gadget-2. We evaluated the performance of the Java version by running colliding galaxies simulation and found that it can achieve around 70% of C Gadget-2's performance.
Resumo:
MPJ Express is our implementation of MPI-like bindings for Java. In this paper we discuss our intermediate buffering layer that makes use of the so-called direct byte buffers introduced in the Java New I/O package. The purpose of this layer is to support the implementation of derived datatypes. MPJ Express is the first Java messaging library that implements this feature using pure Java. In addition, this buffering layer allows efficient implementation of communication devices based on proprietary networks such as Myrinet. In this paper we evaluate the performance of our buffering layer and demonstrate the usefulness of direct byte buffers. Also, we evaluate the performance of MPJ Express against other messaging systems using Myrinet and show that our buffering layer has made it possible to avoid the overheads suffered by other Java systems such as mpiJava that relies on the Java Native Interface.
Resumo:
MPJ Express is our implementation of MPI-like bindings for Java. In this paper we discuss our intermediate buffering layer that makes use of the so-called direct byte buffers introduced in the Java New I/O package. The purpose of this layer is to support the implementation of derived datatypes. MPJ Express is the first Java messaging library that implements this feature using pure Java. In addition, this buffering layer allows efficient implementation of communication devices based on proprietary networks such as Myrinet. In this paper we evaluate the performance of our buffering layer and demonstrate the usefulness of direct byte buffers. Also, we evaluate the performance of MPJ Express against other messaging systems using Myrinet and show that our buffering layer has made it possible to avoid the overheads suffered by other Java systems such as mpiJava that relies on the Java Native Interface.
Resumo:
Since its introduction in 1993, the Message Passing Interface (MPI) has become a de facto standard for writing High Performance Computing (HPC) applications on clusters and Massively Parallel Processors (MPPs). The recent emergence of multi-core processor systems presents a new challenge for established parallel programming paradigms, including those based on MPI. This paper presents a new Java messaging system called MPJ Express. Using this system, we exploit multiple levels of parallelism - messaging and threading - to improve application performance on multi-core processors. We refer to our approach as nested parallelism. This MPI-like Java library can support nested parallelism by using Java or Java OpenMP (JOMP) threads within an MPJ Express process. Practicality of this approach is assessed by porting to Java a massively parallel structure formation code from Cosmology called Gadget-2. We introduce nested parallelism in the Java version of the simulation code and report good speed-ups. To the best of our knowledge it is the first time this kind of hybrid parallelism is demonstrated in a high performance Java application. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In the 1990s the Message Passing Interface Forum defined MPI bindings for Fortran, C, and C++. With the success of MPI these relatively conservative languages have continued to dominate in the parallel computing community. There are compelling arguments in favour of more modern languages like Java. These include portability, better runtime error checking, modularity, and multi-threading. But these arguments have not converted many HPC programmers, perhaps due to the scarcity of full-scale scientific Java codes, and the lack of evidence for performance competitive with C or Fortran. This paper tries to redress this situation by porting two scientific applications to Java. Both of these applications are parallelized using our thread-safe Java messaging system—MPJ Express. The first application is the Gadget-2 code, which is a massively parallel structure formation code for cosmological simulations. The second application uses the finite-domain time-difference method for simulations in the area of computational electromagnetics. We evaluate and compare the performance of the Java and C versions of these two scientific applications, and demonstrate that the Java codes can achieve performance comparable with legacy applications written in conventional HPC languages. Copyright © 2009 John Wiley & Sons, Ltd.
Experimental comparison of the comprehensibility of a Z specification and its implementation in Java
Resumo:
Comprehensibility is often raised as a problem with formal notations, yet formal methods practitioners dispute this. In a survey, one interviewee said 'formal specifications are no more difficult to understand than code'. Measurement of comprehension is necessarily comparative and a useful comparison for a specification is against its implementation. Practitioners have an intuitive feel for the comprehension of code. A quantified comparison will transfer this feeling to formal specifications. We performed an experiment to compare the comprehension of a Z specification with that of its implementation in Java. The results indicate there is little difference in comprehensibility between the two. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The ability to display and inspect powder diffraction data quickly and efficiently is a central part of the data analysis process. Whilst many computer programs are capable of displaying powder data, their focus is typically on advanced operations such as structure solution or Rietveld refinement. This article describes a lightweight software package, Jpowder, whose focus is fast and convenient visualization and comparison of powder data sets in a variety of formats from computers with network access. Jpowder is written in Java and uses its associated Web Start technology to allow ‘single-click deployment’ from a web page, http://www.jpowder.org. Jpowder is open source, free and available for use by anyone.
Resumo:
Compute grids are used widely in many areas of environmental science, but there has been limited uptake of grid computing by the climate modelling community, partly because the characteristics of many climate models make them difficult to use with popular grid middleware systems. In particular, climate models usually produce large volumes of output data, and running them also involves complicated workflows implemented as shell scripts. A new grid middleware system that is well suited to climate modelling applications is presented in this paper. Grid Remote Execution (G-Rex) allows climate models to be deployed as Web services on remote computer systems and then launched and controlled as if they were running on the user's own computer. Output from the model is transferred back to the user while the run is in progress to prevent it from accumulating on the remote system and to allow the user to monitor the model. G-Rex has a REST architectural style, featuring a Java client program that can easily be incorporated into existing scientific workflow scripts. Some technical details of G-Rex are presented, with examples of its use by climate modellers.
Resumo:
G-Rex is light-weight Java middleware that allows scientific applications deployed on remote computer systems to be launched and controlled as if they are running on the user's own computer. G-Rex is particularly suited to ocean and climate modelling applications because output from the model is transferred back to the user while the run is in progress, which prevents the accumulation of large amounts of data on the remote cluster. The G-Rex server is a RESTful Web application that runs inside a servlet container on the remote system, and the client component is a Java command line program that can easily be incorporated into existing scientific work-flow scripts. The NEMO and POLCOMS ocean models have been deployed as G-Rex services in the NERC Cluster Grid, and G-Rex is the core grid middleware in the GCEP and GCOMS e-science projects.
Resumo:
Compute grids are used widely in many areas of environmental science, but there has been limited uptake of grid computing by the climate modelling community, partly because the characteristics of many climate models make them difficult to use with popular grid middleware systems. In particular, climate models usually produce large volumes of output data, and running them usually involves complicated workflows implemented as shell scripts. For example, NEMO (Smith et al. 2008) is a state-of-the-art ocean model that is used currently for operational ocean forecasting in France, and will soon be used in the UK for both ocean forecasting and climate modelling. On a typical modern cluster, a particular one year global ocean simulation at 1-degree resolution takes about three hours when running on 40 processors, and produces roughly 20 GB of output as 50000 separate files. 50-year simulations are common, during which the model is resubmitted as a new job after each year. Running NEMO relies on a set of complicated shell scripts and command utilities for data pre-processing and post-processing prior to job resubmission. Grid Remote Execution (G-Rex) is a pure Java grid middleware system that allows scientific applications to be deployed as Web services on remote computer systems, and then launched and controlled as if they are running on the user's own computer. Although G-Rex is general purpose middleware it has two key features that make it particularly suitable for remote execution of climate models: (1) Output from the model is transferred back to the user while the run is in progress to prevent it from accumulating on the remote system and to allow the user to monitor the model; (2) The client component is a command-line program that can easily be incorporated into existing model work-flow scripts. G-Rex has a REST (Fielding, 2000) architectural style, which allows client programs to be very simple and lightweight and allows users to interact with model runs using only a basic HTTP client (such as a Web browser or the curl utility) if they wish. This design also allows for new client interfaces to be developed in other programming languages with relatively little effort. The G-Rex server is a standard Web application that runs inside a servlet container such as Apache Tomcat and is therefore easy to install and maintain by system administrators. G-Rex is employed as the middleware for the NERC1 Cluster Grid, a small grid of HPC2 clusters belonging to collaborating NERC research institutes. Currently the NEMO (Smith et al. 2008) and POLCOMS (Holt et al, 2008) ocean models are installed, and there are plans to install the Hadley Centre’s HadCM3 model for use in the decadal climate prediction project GCEP (Haines et al., 2008). The science projects involving NEMO on the Grid have a particular focus on data assimilation (Smith et al. 2008), a technique that involves constraining model simulations with observations. The POLCOMS model will play an important part in the GCOMS project (Holt et al, 2008), which aims to simulate the world’s coastal oceans. A typical use of G-Rex by a scientist to run a climate model on the NERC Cluster Grid proceeds as follows :(1) The scientist prepares input files on his or her local machine. (2) Using information provided by the Grid’s Ganglia3 monitoring system, the scientist selects an appropriate compute resource. (3) The scientist runs the relevant workflow script on his or her local machine. This is unmodified except that calls to run the model (e.g. with “mpirun”) are simply replaced with calls to "GRexRun" (4) The G-Rex middleware automatically handles the uploading of input files to the remote resource, and the downloading of output files back to the user, including their deletion from the remote system, during the run. (5) The scientist monitors the output files, using familiar analysis and visualization tools on his or her own local machine. G-Rex is well suited to climate modelling because it addresses many of the middleware usability issues that have led to limited uptake of grid computing by climate scientists. It is a lightweight, low-impact and easy-to-install solution that is currently designed for use in relatively small grids such as the NERC Cluster Grid. A current topic of research is the use of G-Rex as an easy-to-use front-end to larger-scale Grid resources such as the UK National Grid service.
Resumo:
Collaborative software is usually thought of as providing audio-video conferencing services, application/desktop sharing, and access to large content repositories. However mobile device usage is characterized by users carrying out short and intermittent tasks sometimes referred to as 'micro-tasking'. Micro-collaborations are not well supported by traditional groupware systems and the work in this paper seeks out to address this. Mico is a system that provides a set of application level peer-to-peer services for the ad-hoc formation and facilitation of collaborative groups across a diverse mobile device domain. The system builds on the Java ME bindings of the JXTA P2P protocols, and is designed with an approach to use the lowest common denominators that are required for collaboration between varying degrees of mobile device capability. To demonstrate how our platform facilitates application development, we built an exemplary set of demonstration applications and include code examples here to illustrate the ease and speed afforded when developing collaborative software with Mico.
Resumo:
Population subdivision complicates analysis of molecular variation. Even if neutrality is assumed, three evolutionary forces need to be considered: migration, mutation, and drift. Simplification can be achieved by assuming that the process of migration among and drift within subpopulations is occurring fast compared to Mutation and drift in the entire population. This allows a two-step approach in the analysis: (i) analysis of population subdivision and (ii) analysis of molecular variation in the migrant pool. We model population subdivision using an infinite island model, where we allow the migration/drift parameter Theta to vary among populations. Thus, central and peripheral populations can be differentiated. For inference of Theta, we use a coalescence approach, implemented via a Markov chain Monte Carlo (MCMC) integration method that allows estimation of allele frequencies in the migrant pool. The second step of this approach (analysis of molecular variation in the migrant pool) uses the estimated allele frequencies in the migrant pool for the study of molecular variation. We apply this method to a Drosophila ananassae sequence data set. We find little indication of isolation by distance, but large differences in the migration parameter among populations. The population as a whole seems to be expanding. A population from Bogor (Java, Indonesia) shows the highest variation and seems closest to the species center.