104 resultados para Inorganic acids
Resumo:
In the United Kingdom, as in other regions of Europe and North America, recent decreases in surface water sulphate concentrations, due to reduced sulphur emissions, have coincided with marked increases in dissolved organic carbon (DOC) concentrations. Since many of the compounds comprising DOC are acidic, the resulting increases in organic acidity may have the potential to offset the benefits of a decrease in mineral (sulphate) acidity. To test this, we used a triprotic model of organic acid dissociation to estimate the proportional organic acid buffering of reduced mineral acidity as measured in the 22 lakes and streams monitored by the UK Acid Waters Monitoring Network. For an average non-marine sulphate decrease of 30 μeq l− 1 over 15 years from 1988–2003, we estimate that around 28% was counterbalanced by rising strong organic acids, 20% by rising alkalinity (partly attributable to an increase in weak organic acids), 11% by falling inorganic aluminium and 41% by falling non-marine base cations. The situation is complicated by a concurrent decrease in marine ion concentrations, and the impact this may have had on both DOC and acidity, but results clearly demonstrate that organic acid increases have substantially limited the amount of recovery from acidification (in terms of rising alkalinity and falling aluminium) that have resulted from reducing sulphur emissions. The consistency and magnitude of sulphate and organic acid changes are consistent with a causal link between the two, possibly due to the effects of changing acidity, ionic strength and aluminium concentrations on organic matter solubility. If this is the case, then organic acids can be considered effective but partial buffers to acidity change in organic soils, and this mechanism needs to be considered in assessing and modelling recovery from acidification, and in defining realistic reference conditions. However, large spatial variations in the relative magnitude of organic acid and sulphate changes, notably for low-deposition sites in northwestern areas where organic acid increases apparently exceed non-marine sulphate decreases, suggest that additional factors, such as changes in sea-salt deposition and climatic factors, may be required to explain the full magnitude of DOC increases in UK surface waters.
Resumo:
In the largely organic soils in which ectomycorrhizas are commonly found, a preference for absorbing organic nitrogen over mineral forms is likely to be an advantage, especially where mineralisation rates are low. To determine rates of both independent and preferential growth of ectomycorrhizal basidiomycetes on organic and inorganic nitrogen, strains of Hebeloma were grown on nutrient agar media containing either NH4+ or glutamic acid as the sole source of nitrogen, on both single medium and split plate Petri dishes. Growth rates on the split plate Petri dishes, where the fungi had access to both nitrogen sources, were generally greater than on the single medium dishes. Growth on glutamic acid was at least equal to, and usually greater than, that on NH4+. In some cases growth on NH4+ alone appeared severely inhibited, a condition that was partially alleviated by access to glutamic acid on the split plates Petri dishes. This highlights a potential pitfall of single nitrogen source growth studies. The greater growth of most strains on glutamic acid suggests an adaptation to organic nitrogen utilisation in these strains. If this is so in soils with low mineralisation rates, direct uptake of amino acids by ectomycorrhizal plants could by-pass the bottle neck that requires mineral nitrogen to be made available for plant uptake.
Resumo:
We have examined the contributions sucrose and sawdust make to the net immobilization of inorganic soil N and assimilation of both C and N into microbial biomass when they are used as part of a restoration plan to promote the establishment of indigenous vegetation on abandoned agricultural fields on the Central Hungarian Plain. Both amendments led to net N immobilization. Sucrose addition also led to mobilization of N from the soil organic N pool and its immobilization into microbial biomass, whereas sawdust addition apparently immobilized soil N into a non-biomass compartment or a biomass component that was not detected by the conventional biomass N assay (CHCl3 fumigation and extraction). This suggests that the N was either cycled through the biomass, but not immobilized within it, or that it was immobilized in a protected biomass fraction different to the fraction into which N was immobilized in response to sucrose addition.
Resumo:
The combined use of organic residue and inorganic fertiliser-phosphorus (P) is appropriate in meeting both the short and long-term P requirement of crops. To assess the influence of added inorganic fertiliser-P on the processes of decomposition and P release from the residue and the relationships with quality, prunings of Gliricidia sepium, Leucaena leucocephela, Senna siamea, Acacia mangium and Paraserienthus falcataria were incubated without and with added inorganic fertiliser-P for 56 days. Soil was added only as inoculum. Decomposition rate and amounts of acid extractable-P (P release) were in the same order: G. sepium > S. siamea > L. leucocepheta > P falcataria > A. mangium. Unlike the other residues, A. mangium released no P despite the loss of half its mass during the 8 weeks of incubation. The residue P content correlated with P release. However, decomposition rate did not correlate with residue P content but with the lignin, polyphenol and cellulose content, and ratios to P. These ratios were negatively correlated with P release suggesting that lignin and polyphenol contents influence P release more when the residue-P content is low. Results suggest that rate of decomposition influences the release of P. The critical residue P content for P release was estimated to be 0.12% < P < 0.19%. Added P had no effect on decomposition and P release from the residues.
Resumo:
A set of free-drift experiments was undertaken to synthesize carbonates of mixed cation content (Fe, Ca, Mg) from solution at 25 and 70 degrees C to better understand the relationship between the mineralogy and composition of these phases and the solutions from which they precipitate. Metastable solid solutions formed at 25 degrees C which are not predicted from the extrapolation of higher temperature equilibrium assemblages; instead, solids formed that were intermediary in chemical composition to known magnesite-siderite and dolomite solid solutions. A calcite-siderite solid solution precipitated at 25 degrees C, with the percentage of CaCO3 in the solid being proportional to the aqueous Ca/Fe ratio of the solution, while Mg was excluded from the crystal structure except at relatively high aqueous Mg/Ca and Mg/Fe ratios and a low Ca content. Alternatively, at 70 degrees C Mg was the predominant cation of the solid solutions. These results are compatible with the hypothesis that the relative dehydration energies of Fe, Ca and Mg play an important role in the formation of mixed cation carbonates in nature. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A range of archaeological samples have been examined using FT-IR spectroscopy. These include suspected coprolite samples from the Neolithic site of Catalhoyuk in Turkey, pottery samples from the Roman site of Silchester, UK and the Bronze Age site of Gatas, Spain and unidentified black residues on pottery sherds from the Roman sites of Springhead and Cambourne, UK. For coprolite samples the aim of FT-IR analysis is identification. Identification of coprolites in the field is based on their distinct orange colour; however, such visual identifications can often be misleading due to their similarity with deposits such as ochre and clay. For pottery the aim is to screen those samples that might contain high levels of organic residues which would be suitable for GC-MS analysis. The experiments have shown coprolites to have distinctive spectra, containing strong peaks from calcite, phosphate and quartz; the presence of phosphorus may be confirmed by SEM-EDX analysis. Pottery containing organic residues of plant and animal origin has also been shown to generally display strong phosphate peaks. FT-IR has distinguished between organic resin and non-organic compositions for the black residues, with differences also being seen between organic samples that have the same physical appearance. Further analysis by CC-MS has confirmed the identification of the coprolites through the presence of coprostanol and bile acids, and shows that the majority of organic pottery residues are either fatty acids or mono- or di-acylglycerols from foodstuffs, or triterpenoid resin compounds exposed to high temperatures. One suspected resin sample was shown to contain no organic residues. and it is seen that resin samples with similar physical appearances have different chemical compositions. FT-IR is proposed as a quick and cheap method of screening archaeological samples before subjecting them to the more expensive and time-consuming method of GC-MS. This will eliminate inorganic samples such as clays and ochre from CC-MS analysis, and will screen those samples which are most likely to have a high concentration of preserved organic residues. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We have examined the contributions sucrose and sawdust make to the net immobilization of inorganic soil N and assimilation of both C and N into microbial biomass when they are used as part of a restoration plan to promote the establishment of indigenous vegetation on abandoned agricultural fields on the Central Hungarian Plain. Both amendments led to net N immobilization. Sucrose addition also led to mobilization of N from the soil organic N pool and its immobilization into microbial biomass, whereas sawdust addition apparently immobilized soil N into a non-biomass compartment or a biomass component that was not detected by the conventional biomass N assay (CHCl3 fumigation and extraction). This suggests that the N was either cycled through the biomass, but not immobilized within it, or that it was immobilized in a protected biomass fraction different to the fraction into which N was immobilized in response to sucrose addition.
Resumo:
A highly stereoselective synthesis of conformationally constrained cyclic γ-amino acids has been devised. The key step involves an intramolecular cyclization of a nitronate onto a conjugated ester, promoted by a bifunctional thiourea catalyst. This methodology has been successfully applied to generate a variety of γ-amino acids, including some containing three contiguous stereocenters, with very high diastereoselectivity and excellent enantioselectivity. It is postulated that an interaction that is key to the success of the process is the simultaneous coordination of the thiourea functionality to both the conjugated ester and the nitronate. Finally, the synthetic utility of these compounds is demonstrated in the synthesis of two dipeptides derived from the C- and N-termini.
Resumo:
The aim of this work was to couple a nitrogen (N) sub-model to already existent hydrological lumped (LU4-N) and semi-distributed (LU4-R-N and SD4-R-N) conceptual models, to improve our understanding of the factors and processes controlling nitrogen cycling and losses in Mediterranean catchments. The N model adopted provides a simplified conceptualization of the soil nitrogen cycle considering mineralization, nitrification, immobilization, denitrification, plant uptake, and ammonium adsorption/desorption. It also includes nitrification and denitrification in the shallow perched aquifer. We included a soil moisture threshold for all the considered soil biological processes. The results suggested that all the nitrogen processes were highly influenced by the rain episodes and that soil microbial processes occurred in pulses stimulated by soil moisture increasing after rain. Our simulation highlighted the riparian zone as a possible source of nitrate, especially after the summer drought period, but it can also act as an important sink of nitrate due to denitrification, in particular during the wettest period of the year. The riparian zone was a key element to simulate the catchment nitrate behaviour. The lumped LU4-N model (which does not include the riparian zone) could not be validated, while both the semi-distributed LU4-R-N and SD4-R-N model (which include the riparian zone) gave satisfactory results for the calibration process and acceptable results for the temporal validation process.
Resumo:
There is currently considerable interest in potential atherogenic and thrombogenic consequences of elevated concentrations of triacylglycerols, especially in the post-prandial state. Despite this, there is limited information on the effects of dietary fatty acids on the synthesis, secretion and metabolism of chylomicrons, the large triacylglycerol-rich lipoproteins synthesized in the enterocyte following the digestion and absorption of dietary fat. This brief review considers current approaches to the investigation of chylomicron synthesis and summarizes some of the human, cell and animal studies that have investigated effects of different fatty acids on these pathways. Potential sites for modulatory effects of dietary fatty acids on the molecular events of chylomicron synthesis are proposed in the light of the recent model that has been developed from cell and animal studies and observations based on abnormalities in chylomicron formation in human inherited autosomal recessive diseases.
Resumo:
Long-chain n-3 polyunsaturated fatty acids are found in oily fish and in fish oils and similar preparations. Substantial evidence from epidemiological and case-control studies indicates that consumption of fish, oily fish and long-chain n-3 fatty acids reduces risk of cardiovascular mortality. Secondary prevention studies using long-chain n-3 fatty acids in patients post-myocardial infarction have shown a reduction in total and cardiovascular mortality with an especially potent effect on sudden death. Long-chain n-3 fatty acids have been shown to beneficially modify a range of cardiovascular risk factors, which may result in primary cardiovascular prevention. However, reduced non-fatal and fatal events and a reduction in sudden death probably involve other mechanisms. Reduced thrombosis following long-chain n-3 fatty acids may play a role. A decrease in arrhythmias is a favoured mechanism of action of long-chain n-3 fatty acids and is supported by cell culture and animal studies. However human trials using implantable cardiac defibrillators have produced inconsistent findings and a recent meta-analysis does not support this mechanism of action. An alternative mechanism of action may be stabilisation of atherosclerotic plaques by long-chain n-3 fatty acids. This is suggested by one published human study which showed that incorporation of long-chain n-3 fatty acids into plaques collected at carotid endarterectomy resulted in fewer macrophages in the plaque and a morphology indicative of increased stability. These findings are supported from observations in an animal model and suggest that the primary effect of long-chain n-3 fatty acids might be on macrophages within the plaque.
Resumo:
The present study investigated whether consuming dairy products naturally enriched in cis-9, trans-11 (c9,t11) conjugated linoleic acid (CLA) by modification of cattle feed increases the concentration of this isomer in plasma and cellular lipids in healthy men. The study had a double-blind cross-over design. Subjects aged 34-60 years consumed dairy products available from food retailers for 1 week and then either control (0.17 g c9,t11 CLA/d; 0.31 g trans-vaccenic acid (tVA)/d) or CLA-enriched (1.43 g c9,t11 CLA/d; 4.71 g tVA/d) dairy products for 6 weeks. After 7 weeks washout, this was repeated with the alternate products. c9,t11 CLA concentration in plasma lipids was lower after consuming the control products, which may reflect the two-fold greater c9,t11 CLA content of the commercial products. Consuming the CLA-enriched dairy products increased the c9,t11 CLA concentration in plasma phosphatidylcholine (PC) (38 %; P=0.035), triacylglycerol (TAG) (22 %; P < 0.0001) and cholesteryl esters (205 %; P < 0.0001), and in peripheral blood mononuclear cells (PBMC) (238 %; P < 0.0001), while tVA concentration was greater in plasma PC (65 %; P=0.035), TAG (98 %; P=0.001) and PBMC (84 %; P=0.004). Overall, the present study shows that consumption of naturally enriched dairy products in amounts similar to habitual intakes of these foods increased the c9,t11 CLA content of plasma and cellular lipids.
Resumo:
The very long chain (VLC) n-3 polyunsaturated fatty acids (PUFA), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are widely recognised to have beneficial effects on human health. However, recommended intakes of VLC n-3 PUFA (450 mg/day) are not being met by the diet in the majority of the population mainly because of low consumption of oil-rich fish. Current mean intake of VLC n-3 PUFA by adults is estimated to be about 282 mg/day with EPA and DHA contributing about 244 mg/day. Furthermore, the fact that only about 27% of adults eat any oil-rich fish (excluding canned tuna) and knowledge of the poor conversion of α-linolenic acid to EPA and DHA in vivo, particularly in men, leads to the need to review current dietary sources of these fatty acids. Animal-derived foods are likely to have an important function in increasing intake and studies have shown that feeding fish oils to animals can increase the EPA and DHA content of the resulting food products. This paper highlights the importance of examining current and projected consumption trends of meat and other animal products when exploring the potential impact of enriched foods by means of altering animal diets. When related to current food consumption data, potential dietary intakes of EPA+DHA from foods derived from animals fed enriched diets are calculated to be about 231 mg/day. If widely consumed, such foods could have a significant impact on progression of conditions such as cardiovascular disease. Consideration is also given to the sources of VLC n-3 PUFA in animal diets, with the sustainability of fish oil being questioned and the need to investigate the use of alternative dietary sources such as those of algal origin.