93 resultados para Ink splitting force
Resumo:
The effect of the tensor component of the Skyrme effective nucleon-nucleon interaction on the single-particle structure in superheavy elements is studied. A selection of the available Skyrme forces has been chosen and their predictions for the proton and neutron shell closures investigated. The inclusion of the tensor term with realistic coupling strength parameters leads to a small increase in the spin-orbit splitting between the proton 2f7/2 and 2f5/2 partners, opening the Z=114 shell gap over a wide range of nuclei. The Z=126 shell gap, predicted by these models in the absence of the tensor term, is found to be stongly dependent on neutron number with a Z=138 gap opening for large neutron numbers, having a consequent implication for the synthesis of neutron-rich superheavy elements. The predicted neutron shell structures remain largely unchanged by inclusion of the tensor component.
Resumo:
The polar vortex of the Southern Hemisphere (SH) split dramatically during September 2002. The large-scale dynamical effects were manifest throughout the stratosphere and upper troposphere, corresponding to two distinct cyclonic centers in the upper troposphere–stratosphere system. High-resolution (T511) ECMWF analyses, supplemented by analyses from the Met Office, are used to present a detailed dynamical analysis of the event. First, the anomalous evolution of the SH polar vortex is placed in the context of the evolution that is usually witnessed during spring. Then high-resolution fields of potential vorticity (PV) from ECMWF are used to reveal several dynamical features of the split. Vortex fragments are rapidly sheared out into sheets of high (modulus) PV, which subsequently roll up into distinct synoptic-scale vortices. It is proposed that the stratospheric circulation becomes hydrodynamically unstable through a significant depth of the troposphere–stratosphere system as the polar vortex elongates.
Resumo:
We report an extended version of our normal coordinate program ASYM40, which may be used to transform Cartesian force constants from ab initio calculations to a force field in nonredundant internal (symmetry) coordinates. When experimental data are available, scale factors for the theoretical force field may then be optimized by least-squares refinement. The alternative of refining an empirical force field to fit a wide variety of data, as with the previous version ASYM20, has been retained. We compare the results of least-squares refinement of the full harmonic force field with least-squares refinement of only the scale factors for an SCF calculated force field and conclude that the latter approach may be useful for large molecules where more sophisticated calculations are impractical. The refinement of scale factors for a theoretical force field is also useful when there are only limited spectroscopic data. The program will accept ab initio calculated force fields from any program that presents Cartesian force constants as output. The program is available through Quantum Chemistry Program Exchange.
Resumo:
The relationship of the anharmonic force constants in curvilinear internal coordinates to the observed vibration-rotation spectrum of a molecule is reviewed. A simplified method of setting up the required non-linear coordinate transformations is described: this makes use of an / tensor, which is a straightforward generalization of the / matrix used in the customary description of harmonic force constant calculations. General formulae for the / tensor elements, in terms of the familiar L matrix elements, are presented. The use of non-linear symmetry coordinates and redundancies are described. Sample calculations on the water and ammonia molecules are reported.
Resumo:
General expressions for the force constants and dipole‐moment derivatives of molecules are derived, and the problems arising in their practical application are reviewed. Great emphasis is placed on the use of the Hartree–Fock function as an approximate wavefunction, and a number of its properties are discussed and re‐emphasised. The main content of this paper is the development of a perturbed Hartree–Fock theory that makes possible the direct calculation of force constants and dipole‐moment derivatives from SCF–MO wavefunctions. Essentially the theory yields ∂ϕi / ∂RJα, the derivative of an MO with respect to a nuclear coordinate.
Resumo:
Normal coordinate calculations of XH4 and XH3 molecules are reviewed and discussed. It is shown that for most of these molecules the true values of the force constants in the most General Harmonic Force Field can be uniquely determined only by making use of vibration-rotation interaction constants. It is emphasized that without these extra data the GFF is not determined. The results are compared with various model force fields for these molecules.
Resumo:
The harmonic and anharmonic force field of acetylene has been determined in a least-squares calculation from recently determined data on the spectroscopic constants of various isotopic species (including the vibrational l-doubling constant). A general quadratic and cubic force field was used, but a constrained quartic force field containing only 8 of the 23 possible quartic constants. The results are discussed and compared with earlier work.
Resumo:
Analytical potential energy functions which are valid at all dissociation limits have been derived for the ground states of SO2 and O3. The procedure involves minimizing the errors between the observed vibrational spectra and spectra calculated by a variational procedure. Good agreement is obtained between the observed and calculated spectra for both molecules. Comparisons are made between anharmonic force fields, previously determined from the spectral data, and the force fields obtained by differentiating the derived analytical functions at the equilibrium configurations.
Resumo:
Interaction force constants between bond-stretching and angle-bending co-ordinates in polyatomic molecules have been attributed, by some authors, to changes of hybridization due to orbital-following of the bending co-ordinate, and consequent changes of bond length due to the change of hybridization. A method is described for using this model quantitatively to reduce the number of independent force constants in the potential function of a polyatomic molecule, by relating stretch-bend interaction constants to the corresponding diagonal stretching constants. It is proposed to call this model the Hybrid Orbital Force Field. The model is applied to the tetrahedral four co-ordinated carbon atom (as in methane) and to the trigonal planar three coordinated carbon atom (as in formaldehyde).
Resumo:
The microwave spectra of CHD2CN and CHD2NC have been measured from 18 to 40 GHz; about 20 type A and 30 type C transitions have been observed for each molecule. These have been fitted to a Hamiltonian using 3 rotational constants, and 5 quartic and 4 sextic distortion constants, in the IrS reduction of Watson [in “Vibrational spectra and structure” Vol. 6 (1977)]; the standard error of the fit is 26 kHz. For methyl cyanide the 5 quartic distortion constants have been used to further refine the recent harmonic force field of Duncan et al. [J. Mol. Spectrosc. 69, 123 (1978)], but the changes are small. Finally, for both molecules, the harmonic force field has been used to determine zero point average moments of inertia Iz from the ground state rotational constants for many isotopic species, and these have been used to determine an rz structure. The results are compared with rs structure calculations.
Resumo:
The perturbed Hartree–Fock theory developed in the preceding paper is applied to LiH, BH, and HF, using limited basis‐set SCF–MO wavefunctions derived by previous workers. The calculated values for the force constant ke and the dipole‐moment derivative μ(1) are (experimental values in parentheses): LiH, ke = 1.618(1.026)mdyn/Å,μ(1) = −18.77(−2.0±0.3)D/ÅBH,ke = 5.199(3.032)mdyn/Å,μ(1) = −1.03(−)D/Å;HF,ke = 12.90(9.651)mdyn/Å,μ(1) = −2.15(+1.50)D/Å. The values of the force on the proton were calculated exactly and according to the Hellmann–Feynman theorem in each case, and the discrepancies show that none of the wavefunctions used are close to the Hartree–Fock limit, so that the large errors in ke and μ(1) are not surprising. However no difficulties arose in the perturbed Hartree–Fock calculation, so that the application of the theory to more accurate wavefunctions appears quite feasible.
Resumo:
The J = 2−1 microwave spectrum of six isotopic species of HSiF3 has been observed and assigned in excited states of five of the six fundamental vibrations. The assignment is based on relative intensities, double resonance experiments, and trial anharmonic force constant calculations. Analysis of the spectra leads to experimental values for five of the constants, all three l-doubling constants qt, one Fermi resonance constant φ233, and one zeta constant. The harmonic force field has been refined to all the available data on vibration wavenumbers, centrifugal distortion constants, and zeta constants. The cubic anharmonic force field has been refined to the data on and qt constants, using two models: a valence force model with two cubic force constants for SiH and SiF stretching, and a more sophisticated model. With the help of these calculations, the following equilibrium structure has been determined: re(SiH) = 1.4468(±5) Å, re(SiF) = 1.5624(±1) Å, HSiF = 110.64(±3)°,
Resumo:
The mathematical difficulties which can arise in the force constant refinement procedure for calculating force constants and normal co-ordinates are described and discussed. The method has been applied to the methyl fluoride molecule, using an electronic computer. The best values of the twelve force constants in the most general harmonic potential field were obtained to fit twenty-two independently observed experimental data, these being the six vibration frequencies, three Coriolis zeta constants and two centrifugal stretching constants DJ and DJK, for both CH3F and CD3F. The calculations have been repeated both with and without anharmonicity corrections to the vibration frequencies. All the experimental data were weighted according to the reliability of the observations, and the corresponding standard errors and correlation coefficients of the force constants have been deduced. The final force constants are discussed briefly, and compared with previous treatments, particularly with a recent Urey-Bradley treatment for this molecule.
Resumo:
Redundancy relations between vibrational coordinates may be linear (as for rectilinear coordinates used in deriving a G matrix), or non-linear (as for curvilinear coordinates used in formulating model force fields). It is shown that geometrically defined internal coordinates are necessarily curvilinear. Hence it is shown that linear force constants can occur in model force field calculations involving redundant coordinates, in disagreement with the recent proposal of Gussoni and Zerbi.