23 resultados para Indoor acoustic environment


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-dimensional computational simulations are performed to examine indoor environment and micro-environment around human bodies in an office in terms of thermal environment and air quality. In this study, personal displacement ventilation (PDV), including two cases with all seats taken and two middle seats taken, is compared with overall displacement ventilation (ODV) of all seats taken under the condition that supply temperature is 24℃ and air change rate is 60 l/s per workstation. When using PDV, temperature stratification, the characteristic of displacement ventilation, is obviously observed at the position of occupant’s head and clearer in the case with all seats taken. Verticalertical ertical temperature temperature temperature temperature temperature differences below height of the head areare under under under 2℃ in two cases in two cases in two cases in two cases in two cases in two cases in two cases in two cases with all seats taken,and the temperature with PDV is higher than that with ODV. Verticalertical ertical temperature temperature temperature temperature temperature temperature difference is under 3 under 3under 3 under 3℃ in the case in the case in the case in the case in the case in the case in the case with two middle seats taken. CO2 concentration is lower th is lower th is lower this lower this lower than 2 g/man 2 g/m an 2 g/man 2 g/man 2 g/man 2 g/m 3 in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. The results indicate that PDV can be used in the room with big change of occupants’ number to satisfy the need of thermal comfort and air quality. When not all seats are taken, designers should increase supply air requirement or reduce its temperature for thermal comfort. INDEX TERMS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Designing for indoor thermal environmental conditions is one of the key elements in the energy efficient building design process. This paper introduces a development of the Chinese national Evaluation Standard for indoor thermal environments (Evaluation Standard). International standards including the ASHRAE55, ISO7730, DIN EN, and CIBSE Guide-A have been reviewed and referenced for the development of the Evaluation Standard. In addition, over 28,000 subjects participated in the field study from different climate zones in China and over 500 subjects have been involved in laboratory studies. The research findings reveal that there is a need to update the Chinese thermal comfort standard based on local climates and people's habitats. This paper introduces in detail the requirements for the thermal environment for heated and cooled buildings and free-running buildings in China.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Air distribution systems are one of the major electrical energy consumers in air-conditioned commercial buildings which maintain comfortable indoor thermal environment and air quality by supplying specified amounts of treated air into different zones. The sizes of air distribution lines affect energy efficiency of the distribution systems. Equal friction and static regain are two well-known approaches for sizing the air distribution lines. Concerns to life cycle cost of the air distribution systems, T and IPS methods have been developed. Hitherto, all these methods are based on static design conditions. Therefore, dynamic performance of the system has not been yet addressed; whereas, the air distribution systems are mostly performed in dynamic rather than static conditions. Besides, none of the existing methods consider any aspects of thermal comfort and environmental impacts. This study attempts to investigate the existing methods for sizing of the air distribution systems and proposes a dynamic approach for size optimisation of the air distribution lines by taking into account optimisation criteria such as economic aspects, environmental impacts and technical performance. These criteria have been respectively addressed through whole life costing analysis, life cycle assessment and deviation from set-point temperature of different zones. Integration of these criteria into the TRNSYS software produces a novel dynamic optimisation approach for duct sizing. Due to the integration of different criteria into a well- known performance evaluation software, this approach could be easily adopted by designers in busy nature of design. Comparison of this integrated approach with the existing methods reveals that under the defined criteria, system performance is improved up to 15% compared to the existing methods. This approach is interpreted as a significant step forward reaching to the net zero emission building in future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The intake fraction (iF) of nonreactive constituents of exhaust from mobile vehicles in the urban area of HongKong is investigated using available monitoring data for carbon monoxide (CO) as a tracer of opportunity. Correcting for regional transport of carbon monoxide into HongKong, the annual-average iF for nonreactive motor vehicle emissions within the city is estimated to be around 270 per million. This estimated iF is much higher than values previously reported for vehicle emissions in US urban areas, Helsinki and Beijing, and somewhat lower than those reported for a densely populated street canyon in downtown Manhattan, New York City, or for emissions into indoor environments. The reported differences in intakefractions in various cities mainly result from the differences in local population densities. Our analysis highlights the importance of accounting for the influence of upwind transport of pollutants when using ambient data to estimate iF for an urban area. For vehicleexhaust in HongKong, it is found that the in/near vehicle microenvironment contributes similarly to the indoor home environment when accounting for the overall iF for children and adults. Keywords Intakefraction; Vehicle emission; Regional pollutant transport; Carbon monoxide; Exposure

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Intelligent buildings should provide a multi-sensory experience so that visual, aural, tactile, olfactory and gustatory senses are stimulated appropriately. A lack of environmental stimuli produces a boring and unsatisfying environment. It is now known that the environment affects people at deeper levels than, say, health and safety, and consequently it can modify moods and work performance. A holistic approach is proposed which recognizes that the physical environment together with social, organizational and personal factors can enhance the productivity of occupants. This approach provides a footprint for the design of healthier and more sustainable workplaces.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A wireless sensor network (WSN) is a group of sensors linked by wireless medium to perform distributed sensing tasks. WSNs have attracted a wide interest from academia and industry alike due to their diversity of applications, including home automation, smart environment, and emergency services, in various buildings. The primary goal of a WSN is to collect data sensed by sensors. These data are characteristic of being heavily noisy, exhibiting temporal and spatial correlation. In order to extract useful information from such data, as this paper will demonstrate, people need to utilise various techniques to analyse the data. Data mining is a process in which a wide spectrum of data analysis methods is used. It is applied in the paper to analyse data collected from WSNs monitoring an indoor environment in a building. A case study is given to demonstrate how data mining can be used to optimise the use of the office space in a building.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

People's interaction with the indoor environment plays a significant role in energy consumption in buildings. Mismatching and delaying occupants' feedback on the indoor environment to the building energy management system is the major barrier to the efficient energy management of buildings. There is an increasing trend towards the application of digital technology to support control systems in order to achieve energy efficiency in buildings. This article introduces a holistic, integrated, building energy management model called `smart sensor, optimum decision and intelligent control' (SMODIC). The model takes into account occupants' responses to the indoor environments in the control system. The model of optimal decision-making based on multiple criteria of indoor environments has been integrated into the whole system. The SMODIC model combines information technology and people centric concepts to achieve energy savings in buildings.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A physiological experiment was carried out in a naturally ventilated, non-HVAC indoor environment of a spacious experimental room. More than 300 healthy university students volunteered for this study. The purpose of the study was to investigate the human physiological indicators which could be used to characterise the indoor operative temperature changes in a building and their impact on human thermal comfort based on the different climatic characteristics people would experience in Chongqing, China. The study found that sensory nerve conduction velocity (SCV) could objectively provide a good indicator for assessment of the human response to changes in indoor operative temperatures in a naturally ventilated situation. The results showed that with the changes in the indoor operative temperatures, the changing trend in the nerve conduction velocity was basically the same as that of the skin temperature at the sensory nerve measuring segment (Tskin(scv)). There was good coherent consistency among the factors: indoor operative temperature, SCV and Tskin(scv) in a certain indoor operative temperature range. Through self-adaptation and self-feedback regulation, the human physiological indicators would produce certain adaptive changes to deal with the changes in indoor operative temperature. The findings of this study should provide the baseline data to inform guidelines for the development of thermal environment-related standards that could contribute to efficient use of energy in buildings in China.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Buildings consume a large amount of energy, in both their use and production. Retrofitting aims to achieve a reduction in this energy consumption. However, there are concerns that retrofitting can cause negative impacts on the internal environment including poor thermal comfort and health issues. This research investigates the impact of retrofitting the façade of existing traditional buildings and the resulting impact on the indoor environment and occupant thermal comfort. A Case building located at the University of Reading has been monitored experimentally and modelled using IES software with monitored values as input conditions for the model. The proposed façade related retrofit options have been simulated and provide information on their effect on the indoor environment. The findings show a positive impact on the internal environment. The data shows a 16.2% improvement in thermal comfort after retrofit is simulated. This also achieved a 21.6% reduction in energy consumption from the existing building.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature, relative humidity, and air quality all affect the sensory system via thermo receptors in the skin and the olfactory system. Air quality is mainly defined by the contaminants in the air. However, the most persistent memory of any space is often its odor. Strong, emotional, and past experiences are awakened by the olfactory sense. Odors can also influence cognitive processes that affect creative task performance, as well as personal memories and moods. Besides nitrogen and oxygen, the air contains particles and many chemicals that affect the efficiency of the oxygenation process in the blood, and ultimately the air breathed affects thinking and concentration. It is important to show clients the value of spending more capital on high-quality buildings that promote good ventilation. The process of achieving indoor-air quality is a continual one throughout the design, construction, commissioning, and facilities management processes. This paper reviews the evidence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The internal partitioning, which is frequently introduced in open-space planning due to its flexibility, was tested to study its effects on the room air quality as well as ventilation performance. For the study, physical tests using a small model room and numerical modeling using CFD computation were utilized to evaluate different test conditions employing mixing ventilation from the ceiling. The partition parameters, such as its location, height, and the gap underneath, as well as contaminant source location were tested under isothermal conditions. This paper summarizes the results from the study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Until recently, there has been little investigation concerning the poor indoor air quality (IAQ) in classrooms. Despite the evidence that the educational building systems in many of the UK institutions have significant defects that may degrade IAQ, systematic assessments of IAQ measurements has been rarely undertaken. When undertaking IAQ measurement, there is a difficult task of representing and characterizing the environment parameters. Although technologies exist to measure these parameters, direct measurements especially in a naturally ventilated spaces are often difficult. This paper presents a methodology for developing a method to characterize indoor environment flow parameters as well as the Carbon Dioxide (CO2) concentrations. Thus, CO2 concentration level can be influenced by the differences in the selection of sampling points and heights. However, because this research focuses on natural ventilation in classrooms, air exchange is provided mainly by air infiltration. It is hoped that the methodology developed and evaluated in this research can effectively simplify the process of estimating the parameters for a systematic assessment of IAQ measurements in a naturally ventilated classrooms.