60 resultados para IRON 57
Resumo:
Bacteria commonly utilise a unique type of transporter, called Feo, to specifically acquire the ferrous (Fe2+) form of iron from their environment. Enterobacterial Feo systems are composed of three proteins: FeoA, a small, soluble SH3-domain protein probably located in the cytosol; FeoB, a large protein with a cytosolic N-terminal G-protein domain and a C-terminal integral inner-membrane domain containing two 'Gate' motifs which likely functions as the Fe2+ permease; and FeoC, a small protein apparently functioning as an [Fe-S]-dependent transcriptional repressor. We provide a review of the current literature combined with a bioinformatic assessment of bacterial Feo systems showing how they exhibit common features, as well as differences in organisation and composition which probably reflect variations in mechanisms employed and function.
Resumo:
Demand for organic milk is partially driven by consumer perceptions that it is more nutritious. However, there is still considerable uncertainty over whether the use of organic production standards affects milk quality. Here we report results of meta-analyses based on 170 published studies comparing the nutrient content of organic and conventional bovine milk. There were no significant differences in total SFA and MUFA concentrations between organic and conventional milk. However, concentrations of total PUFA and n-3 PUFA were significantly higher in organic milk, by an estimated 7 (95 % CI −1, 15) % and 56 (95 % CI 38, 74) %, respectively. Concentrations of α-linolenic acid (ALA), very long-chain n-3 fatty acids (EPA+DPA+DHA) and conjugated linoleic acid were also significantly higher in organic milk, by an 69 (95 % CI 53, 84) %, 57 (95 % CI 27, 87) % and 41 (95 % CI 14, 68) %, respectively. As there were no significant differences in total n-6 PUFA and linoleic acid (LA) concentrations, the n-6:n-3 and LA:ALA ratios were lower in organic milk, by an estimated 71 (95 % CI −122, −20) % and 93 (95 % CI −116, −70) %. It is concluded that organic bovine milk has a more desirable fatty acid composition than conventional milk. Meta-analyses also showed that organic milk has significantly higher α-tocopherol and Fe, but lower I and Se concentrations. Redundancy analysis of data from a large cross-European milk quality survey indicates that the higher grazing/conserved forage intakes in organic systems were the main reason for milk composition differences.
Resumo:
The uptake of arsenic (As) by plants from contaminated soils presents a health hazard that may affect the use of agricultural and former industrial land. Methods for limiting the hazard are desirable. A proposed remediation treatment comprises the precipitation of iron (Fe) oxides in the contaminated soil by adding ferrous sulfate and lime. The effects on As bioavailability were assessed using a range of vegetable crops grown in the field. Four UK locations were used, where soil was contaminated by As from different sources. At the most contaminated site, a clay loam containing a mean of 748 mg As kg(-1) soil, beetroot, calabrese, cauliflower, lettuce, potato, radish and spinach were grown. For all crops except spinach, ferrous sulfate treatment caused a significant reduction in the bioavailability of As in some part of the crop. Application of ferrous sulfate in solution, providing 0.2% Fe oxides in the soil (0-10 cm), reduced As uptake by a mean of 22%. Solid ferrous sulfate was applied to give concentrations of 0.5% and 1% Fe oxides: the 0.5% concentration reduced As uptake by a mean of 32% and the 1% concentration gave no significant additional benefit. On a sandy loam containing 65 mg As kg(-1) soil, there was tentative evidence that ferrous sulfate treatment up to 2% Fe oxides caused a significant reduction in lettuce As, but calabrese did not respond. At the other two sites, the effects of ferrous sulfate treatment were not significant, but the uptake of soil As was low in treated and untreated soils. Differences between sites in the bioavailable fraction of soil As may be related to the soil texture or the source of As. The highest bioavailability was found on the soil which had been contaminated by aerial deposition and had a high sand content. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
This paper applies multispectral remote sensing techniques to map the Fe-oxide content over the entire Namib sand sea. Spectrometric analysis is applied to field samples to identify the reflectance properties of the dune sands which enable remotely sensed Fe-oxide mapping. The results indicate that the pattern of dune colour in the Namib sand sea arises from the mixing of at least two distinct sources of sand; a red component of high Fe-oxide content (present as a coating on the sand grains) which derives from the inland regions, particularly from major embayments into the Southern African escarpment; and a yellow coastal component of low Fe-oxide content which is brought into the area by northward-moving aeolian transport processes. These major provenances are separated by a mixing zone between 20 kin and 90 kin from the coast throughout the entire length of the sand sea. Previous workers have also recognised a third, fluvial, provenance, but the methodology applied here is not able to map this source as a distinct spectral component. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Global dust trajectories indicate that significant quantities of aeolian-transported iron oxides originate in contemporary dryland areas. One potential source is the iron-rich clay coatings that characterize many sand-sized particles in desert dunefields. This paper uses laboratory experiments to determine the rate at which these coatings can be removed from dune sands by aeolian abrasion. The coatings impart a red colour to the grains to which previous researchers have assigned variable geomorphological significance. The quantities or iron removed during a 120 hour abrasion experiment are small (99 mg kg(-1)) and difficult to detect by eye; however, high resolution spectroscopy clearly indicates that ferric oxides are released during abrasion and the reflectance of the particles alters. One of the products of aeolian abrasion is fine particles (<10 mum diameter) with the potential for long distance transport. Copyright (C) 2004 John Wiley Sons, Ltd.