39 resultados para INFRARED-ABSORPTION
Resumo:
The three lowest (1(2)A('), 2(2)A('), and 1(2)A(')) potential-energy surfaces of the C2Cl radical, correlating at linear geometries with (2)Sigma(+) and (2)Pi states, have been studied ab initio using a large basis set and multireference configuration-interaction techniques. The electronic ground state is confirmed to be bent with a very low barrier to linearity, due to the strong nonadiabatic electronic interactions taking place in this system. The rovibronic energy levels of the (CCCl)-C-12-C-12-Cl-35 isotopomer and the absolute absorption intensities at a temperature of 5 K have been calculated, to an upper limit of 2000 cm(-1), using diabatic potential-energy and dipole moment surfaces and a recently developed variational method. The resulting vibronic states arise from a strong mixture of all the three electronic components and their assignments are intrinsically ambiguous. (c) 2005 American Institute of Physics.
Resumo:
The first three electronic states (1(2)A', 2(2)A', 1(2)A '') of the C2Br radical, correlating at linear geometries with (2)Sigma(+) and (2)Pi states, have been studied ab initio, using Multi Reference Configuration Interaction techniques. The electronic ground state is found to have a bent equilibrium geometry, R-CC = 1.2621 angstrom, R-CBr = 1.7967 angstrom, < CCBr 156.1 degrees, with a very low barrier to linearity. Similarly to the valence isoelectronic radicals C2F and C2Cl, this anomalous behaviour is attributed to a strong three-state non-adiabatic electronic interaction. The Sigma, Pi(1/2), Pi(3/2) vibronic energy levels and their absolute infrared absorption intensities at a temperature of 5K have been calculated for the (CCBr)-C-12-C-12-Br-79 isotopomer, to an upper limit of 2000 cm(-1), using ab initio diabatic potential energy and dipole moment surfaces and a recently developed variational method.
Resumo:
Experimentally and theoretically determined infrared spectra are reported for a series of straight-chain perfluorocarbons: C2F6, C3F8, C4F10, C5F12, C6F14, and C8F18. Theoretical spectra were determined using both density functional (DFT) and ab initio methods. Radiative efficiencies (REs) were determined using the method of Pinnock et al. (1995) and combined with atmospheric lifetimes from the literature to determine global warming potentials (GWPs). Theoretically determined absorption cross sections were within 10% of experimentally determined values. Despite being much less computationally expensive, DFT calculations were generally found to perform better than ab initio methods. There is a strong wavenumber dependence of radiative forcing in the region of the fundamental C-F vibration, and small differences in wavelength between band positions determined by theory and experiment have a significant impact on the REs. We apply an empirical correction to the theoretical spectra and then test this correction on a number of branched chain and cyclic perfluoroalkanes. We then compute absorption cross sections, REs, and GWPs for an additional set of perfluoroalkenes.
Resumo:
CFC-113a (CF3CCl3), CFC-112 (CFCl2CFCl2) and HCFC-133a (CF3CH2Cl) are three newly detected molecules in the atmosphere that are almost certainly emitted as a result of human activity. It is important to characterise the possible contribution of these gases to radiative forcing of climate change and also to provide information on the CO2-equivalence of their emissions. We report new laboratory measurements of absorption cross-sections of these three compounds at a resolution of 0.01 cm−1 for two temperatures 250 K and 295 K in the spectral range of 600–1730 cm−1. These spectra are then used to calculate the radiative efficiencies and global warming potentials (GWP). The radiative efficiencies are found to be between 0.15 and 0.3 W∙m−2∙ppbv−1. The GWP for a 100 year time horizon, relative to carbon dioxide, ranges from 340 for the relatively short-lived HCFC-133a to 3840 for the longer-lived CFC-112. At current (2012) concentrations, these gases make a trivial contribution to total radiative forcing; however, the concentrations of CFC-113a and HCFC-133a are continuing to increase. The 2012 CO2-equivalent emissions, using the GWP (100), are estimated to be about 4% of the current global CO2-equivalent emissions of HFC-134a
Resumo:
The theory of dipole-allowed absorption intensities in triatomic molecules is presented for systems with three close-lying electronic states of doublet multiplicity. Its derivation is within the framework of a recently developed variational method [CARTER, S., HANDY, N. C., PUZZARINI, C., TARRONI, R., and PALMIERI, P., 2000, Molec. Phys., 98,1967]. The method has been applied to the calculation of the infrared absorption spectrum of the C2H radical and its deuterated isotopomer for energies up to 10000 cm(-1) above the ground state, using highly accurate ab initio diabatic potential energy and dipole moment surfaces. The calculated spectra agree very well with those recorded experimentally in a neon matrix [FORNEY, D., JACOX, M. E., and THOMPSON, W. E., 1995, J. molee. Spectrosc., 170, 178] and assignments in the high energy region of the IR spectra are proposed for the first time.
Resumo:
Nitrogen trifluoride (NF3) is an industrial gas used in the semiconductor industry as a plasma etchant and chamber cleaning gas. NF3 is an alternative to other potent greenhouse gases and its usage has increased markedly over the last decade. In recognition of its increased relevance and to aid planning of future usage we report an updated radiative efficiency and global warming potentials for NF3. Laboratory measurements give an integrated absorption cross section of 7.04 x 10(-17) cm(2) molecule(-1) cm(-1) over the spectral region 200 2000 cm(-1). The radiative efficiency is calculated to be 0.21 Wm(-2) ppbv(-1) and the 100 year GWP, relative to carbon dioxide, is 17200. These values are approximately 60% higher than previously published estimates, primarily reflecting the higher infrared absorption cross-sections reported here.
Resumo:
HFC-134a (CF3CH2F) is the most rapidly growing hydrofluorocarbon in terms of atmospheric abundance. It is currently used in a large number of household refrigerators and air-conditioning systems and its concentration in the atmosphere is forecast to increase substantially over the next 50–100 years. Previous estimates of its radiative forcing per unit concentration have differed significantly 25%. This paper uses a two-step approach to resolve this discrepancy. In the first step six independent absorption cross section datasets are analysed. We find that, for the integrated cross section in the spectral bands that contribute most to the radiative forcing, the differences between the various datasets are typically smaller than 5% and that the dependence on pressure and temperature is not significant. A “recommended'' HFC-134a infrared absorption spectrum was obtained based on the average band intensities of the strongest bands. In the second step, the “recommended'' HFC-134a spectrum was used in six different radiative transfer models to calculate the HFC-134a radiative forcing efficiency. The clear-sky instantaneous radiative forcing, using a single global and annual mean profile, differed by 8%, between the 6 models, and the latitudinally-resolved adjusted cloudy sky radiative forcing estimates differed by a similar amount.
Resumo:
Hitherto unobserved overtone and combination bands of nitrous acid have been investigated by Fourier-transform infrared absorption spectroscopy and through the resonance enhancements they provide in the two-photon excition spectrum for forming OH(X) photofragments. Analysis of the band profiles associated with the second and third O—H stretching overtones of trans-HONO, and of the energy disposal into the OH(X) fragments resulting from two-photon dissociation mediated by these overtone levels, provide some clues as to the mechanism for intramolecular vibrational energy redistribution (IVR) within these vibrationally excited molecules. The work serves to highlight further the extreme sensitivity of vibrationally mediated photodissociation (VMP) as a means of revealing weak O—H stretching overtones, even in situations (as here) where the species of interest is but a minor constituent of an equilibrium mixture.
Resumo:
In the mid-1970s it was recognized that, as well as being substances that deplete stratospheric ozone, chlorofluorocarbons (CFCs) were strong greenhouse gases that could have substantial impacts on radiative forcing of climate change. Around a decade later, this group of radiatively active compounds was expanded to include a large number of replacements for ozone-depleting substances such as chlorocarbons, hydrochlorocarbons, hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), bromofluorocarbons, and bromochlorofluorocarbons. This paper systematically reviews the published literature concerning the radiative efficiencies (REs) of CFCs, bromofluorocarbons and bromochlorofluorocarbons (halons), HCFCs, HFCs, PFCs, SF6, NF3, and related halogen containing compounds. In addition we provide a comprehensive and self-consistent set of new calculations of REs and global warming potentials (GWPs) for these compounds, mostly employing atmospheric lifetimes taken from the available literature. We also present Global Temperature change Potentials (GTPs) for selected gases. Infrared absorption spectra used in the RE calculations were taken from databases and individual studies, and from experimental and ab initio computational studies. Evaluations of REs and GWPs are presented for more than 200 compounds. Our calculations yield REs significantly (> 5%) different from those in the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) for 49 compounds. We present new RE values for more than 100 gases which were not included in AR4. A widely-used simple method to calculate REs and GWPs from absorption spectra and atmospheric lifetimes is assessed and updated. This is the most comprehensive review of the radiative efficiencies and global warming potentials of halogenated compounds performed to date.
Resumo:
An optically transparent thin-layer electrochemical (OTTLE) cell with a locally extended optical path has been developed in order to perform vibrational circular dichroism (VCD) spectroscopy on chiral molecules prepared in specific oxidation states by means of electrochemical reduction or oxidation. The new design of the electrochemical cell successfully addresses the technical challenges involved in achieving sufficient infrared absorption. The VCD-OTTLE cell proves to be a valuable tool for the investigation of chiral redox-active molecules.
Resumo:
We measure infrared absorption spectra of 18 hydrochlorofluorocarbons and hydrofluorocarbons, seven of which do not yet appear in the literature. The spectra are used in a narrowband model of the terrestrial infrared radiation to calculate radiative forcing and global warming potentials. We investigate the sensitivity of the radiative forcing to the absorption spectrum temperature dependence, halocarbon vertical profile, stratospheric adjustment, cloudiness, spectral overlap, and latitude, and we make some recommendations for the reporting of radiative forcings that would help to resolve discrepancies between assessments. We investigate simple methods of estimating instantaneous radiative forcing directly from a molecule's absorption spectrum and we present a new method that agrees to within 0.3% with our narrowband model results.
Resumo:
The direct radiative forcing of 65 chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluorocarbons, hydrofluoroethers, halons, iodoalkanes, chloroalkanes, bromoalkanes, perfluorocarbons and nonmethane hydrocarbons has been evaluated using a consistent set of infrared absorption cross sections. For the radiative transfer models, both line-by-line and random band model approaches were employed for each gas. The line-by-line model was first validated against measurements taken by the Airborne Research Interferometer Evaluation System (ARIES) of the U.K. Meteorological Office; the computed spectrally integrated radiance of agreed to within 2% with experimental measurements. Three model atmospheres, derived from a three-dimensional climatology, were used in the radiative forcing calculations to more accurately represent hemispheric differences in water vapor, ozone concentrations, and cloud cover. Instantaneous, clear-sky radiative forcing values calculated by the line-by-line and band models were in close agreement. The band model values were subsequently modified to ensure exact agreement with the line-by-line model values. Calibrated band model radiative forcing values, for atmospheric profiles with clouds and using stratospheric adjustment, are reported and compared with previous literature values. Fourteen of the 65 molecules have forcings that differ by more than 15% from those in the World Meteorological Organization [1999] compilation. Eleven of the molecules have not been reported previously. The 65-molecule data set reported here is the most comprehensive and consistent database yet available to evaluate the relative impact of halocarbons and hydrocarbons on climate change.
Resumo:
In most near-infrared atmospheric windows, absorption of solar radiation is dominated by the water vapor self-continuum and yet there is a paucity of measurements in these windows. We report new laboratory measurements of the self-continuum absorption at temperatures between 293 and 472 K and pressures from 0.015 to 5 atm in four near-infrared windows between 1 and 4 m (10000-2500 cm-1); the measurements are made over a wider range of wavenumber, temperatures and pressures than any previous measurements. They show that the self-continuum in these windows is typically one order of magnitude stronger than given in representations of the continuum widely used in climate and weather prediction models. These results are also not consistent with current theories attributing the self continuum within windows to the far-wings of strong spectral lines in the nearby water vapor absorption bands; we suggest that they are more consistent with water dimers being the major contributor to the continuum. The calculated global-average clear-sky atmospheric absorption of solar radiation is increased by 0.75 W/m2 (which is about 1% of the total clear-sky absorption) by using these new measurements as compared to calculations with the MT_CKD-2.5 self-continuum model.
Resumo:
For a long time, it has been believed that atmospheric absorption of radiation within wavelength regions of relatively high infrared transmittance (so-called ‘windows’) was dominated by the water vapour self-continuum, that is, spectrally smooth absorption caused by H2O−H2O pair interaction. Absorption due to the foreign continuum (i.e. caused mostly by H2O−N2 bimolecular absorption in the Earth's atmosphere) was considered to be negligible in the windows. We report new retrievals of the water vapour foreign continuum from high-resolution laboratory measurements at temperatures between 350 and 430 K in four near-infrared windows between 1.1 and 5 μm (9000–2000 cm−1). Our results indicate that the foreign continuum in these windows has a very weak temperature dependence and is typically between one and two orders of magnitude stronger than that given in representations of the continuum currently used in many climate and weather prediction models. This indicates that absorption owing to the foreign continuum may be comparable to the self-continuum under atmospheric conditions in the investigated windows. The calculated global-average clear-sky atmospheric absorption of solar radiation is increased by approximately 0.46 W m−2 (or 0.6% of the total clear-sky absorption) by using these new measurements when compared with calculations applying the widely used MTCKD (Mlawer–Tobin–Clough–Kneizys–Davies) foreign-continuum model.
Resumo:
The extraterrestrial solar spectrum (ESS) is an important component in near infrared (near-IR) radiative transfer calculations. However, the impact of a particular choice of the ESS in these regions has been given very little attention. A line-by-line (LBL) transfer model has been used to calculate the absorbed solar irradiance and solar heating rates in the near-IR from 2000-10000 cm−1(1-5 μm) using different ESS. For overhead sun conditions in a mid-latitude summer atmosphere, the absorbed irradiances could differ by up to about 11 Wm−2 (8.2%) while the tropospheric and stratospheric heating rates could differ by up to about 0.13 K day−1 (8.1%) and 0.19 K day−1 (7.6%). The spectral shape of the ESS also has a small but non-negligible impact on these factors in the near-IR.