26 resultados para INFINITE DILUTION
Resumo:
Bayesian inference has been used to determine rigorous estimates of hydroxyl radical concentrations () and air mass dilution rates (K) averaged following air masses between linked observations of nonmethane hydrocarbons (NMHCs) spanning the North Atlantic during the Intercontinental Transport and Chemical Transformation (ITCT)-Lagrangian-2K4 experiment. The Bayesian technique obtains a refined (posterior) distribution of a parameter given data related to the parameter through a model and prior beliefs about the parameter distribution. Here, the model describes hydrocarbon loss through OH reaction and mixing with a background concentration at rate K. The Lagrangian experiment provides direct observations of hydrocarbons at two time points, removing assumptions regarding composition or sources upstream of a single observation. The estimates are sharpened by using many hydrocarbons with different reactivities and accounting for their variability and measurement uncertainty. A novel technique is used to construct prior background distributions of many species, described by variation of a single parameter . This exploits the high correlation of species, related by the first principal component of many NMHC samples. The Bayesian method obtains posterior estimates of , K and following each air mass. Median values are typically between 0.5 and 2.0 × 106 molecules cm−3, but are elevated to between 2.5 and 3.5 × 106 molecules cm−3, in low-level pollution. A comparison of estimates from absolute NMHC concentrations and NMHC ratios assuming zero background (the “photochemical clock” method) shows similar distributions but reveals systematic high bias in the estimates from ratios. Estimates of K are ∼0.1 day−1 but show more sensitivity to the prior distribution assumed.
Resumo:
The paper concerns the design and analysis of serial dilution assays to estimate the infectivity of a sample of tissue when it is assumed that the sample contains a finite number of indivisible infectious units such that a subsample will be infectious if it contains one or more of these units. The aim of the study is to estimate the number of infectious units in the original sample. The standard approach to the analysis of data from such a study is based on the assumption of independence of aliquots both at the same dilution level and at different dilution levels, so that the numbers of infectious units in the aliquots follow independent Poisson distributions. An alternative approach is based on calculation of the expected value of the total number of samples tested that are not infectious. We derive the likelihood for the data on the basis of the discrete number of infectious units, enabling calculation of the maximum likelihood estimate and likelihood-based confidence intervals. We use the exact probabilities that are obtained to compare the maximum likelihood estimate with those given by the other methods in terms of bias and standard error and to compare the coverage of the confidence intervals. We show that the methods have very similar properties and conclude that for practical use the method that is based on the Poisson assumption is to be recommended, since it can be implemented by using standard statistical software. Finally we consider the design of serial dilution assays, concluding that it is important that neither the dilution factor nor the number of samples that remain untested should be too large.
Resumo:
A new approach is presented for the solution of spectral problems on infinite domains with regular ends, which avoids the need to solve boundary-value problems for many trial values of the spectral parameter. We present numerical results both for eigenvalues and for resonances, comparing with results reported by Aslanyan, Parnovski and Vassiliev.
An isotope dilution model for partitioning phenylalanine uptake by the liver of lactating dairy cows
Resumo:
An isotope dilution model for partitioning phenylalanine uptake by the liver of the lactating dairy cow was constructed and solved in the steady state. If assumptions are made, model solution permits calculation of the rate of phenylalanine uptake from portal vein and hepatic arterial blood supply, phenylalanine release into the hepatic vein, phenylalanine oxidation and synthesis, and degradation of hepatic constitutive and export proteins. The model requires the measurement of plasma fow rate through the liver in combination with phenylalanine concentrations and plateau isotopic enrichments in arterial, portal and hepatic plasma during a constant infusion of [1-13C]phenylalanine tracer. The model can be applied to other amino acids with similar metabolic fates and will provide a means for assessing the impact of hepatic metabolism on amino acid availability to peripheral tissues. This is of particular importance for the dairy cow when considering the requirements for milk protein synthesis and the negative environmental impact of excessive nitrogen excretion.