35 resultados para Heterogeneous nanostructures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Pb-mine site situated on acidic soil, but comprising of Ca-enriched islands around derelict buildings was used to study the spatial pattern of genetic diversity in Lumbricus rubellus. Two distinct genetic lineages ('A' and 'B'), differentiated at both the mitochondrial (mtDNA COII) and nuclear level (AFLPs) were revealed with a mean inter-lineage mtDNA sequence divergence of approximately 13%, indicative of a cryptic species complex. AFLP analysis indicates that lineage A individuals within one central 'ecological island' site are uniquely clustered, with little genetic overlap with lineage A individuals at the two peripheral sites. FTIR microspectroscopy of Pb-sequestering chloragocytes revealed different phosphate profiles in residents of adjacent acidic and calcareous islands. Bioinformatics found over-representation of Ca pathway genes in ESTPb libraries. Subsequent sequencing of a Ca-transport gene, SERCA, revealed mutations in the protein's cytosolic domain. We recommend the mandatory genotyping of all individuals prior to field-based ecotoxicological assays, particularly those using discriminating genomic technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of uptake of gaseous N2O5 on submicron aerosols containing NaCl and natural sea salt have been investigated in a flow reactor as a function of relative humidity (RH) in the range 30-80% at 295±2K and a total pressure of 1bar. The measured uptake coefficients, γ, were larger on the aerosols containing sea salt compared to those of pure NaCl, and in both cases increased with increasing RH. These observations are explained in terms of the variation in the size of the salt droplets, which leads to a limitation in the uptake rate into small particles. After correction for this effect the uptake coefficients are independent of relative humidity, and agree with those measured previously on larger droplets. A value of γ=0.025 is recommended for the reactive uptake coefficient for N2O5 on deliquesced sea salt droplets at 298K and RH>40%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asymmetric catalysis is of paramount importance in organic synthesis and, in current practice, is achieved by means of homogeneous catalysts. The ability to catalyze such reactions heterogeneously would have a major impact both in the research laboratory and in the production of fine chemicals and pharmaceuticals, yet heterogeneous asymmetric hydrogenation of C═C bonds remains hardly explored. Very recently, we demonstrated how chiral ligands that anchor robustly to the surface of Pd nanoparticles promote asymmetric catalytic hydrogenation: ligand rigidity and stereochemistry emerged as key factors. Here, we address a complementary question: how does the enone reactant adsorb on the metal surface, and what implications does this have for the enantiodifferentiating interaction with the surface-tethered chiral modifiers? A reaction model is proposed, which correctly predicts the identity of the enantiomer experimentally observed in excess.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biologically-inspired peptide sequences have been explored as auxiliaries to mediate self-assembly of synthetic macromolecules into hierarchically organized solution and solid state nanostructures. Peptide sequences inspired by the coiled coil motif and "switch" peptides, which can adopt both amphiphilic alpha-helical and beta-strand conformations, were conjugated to poly(ethylene glycol) (PEG). The solution and solid state self-assembly of these materials was investigated using a variety of spectroscopic, scattering and microscopic techniques. These experiments revealed that the folding and organization properties of the peptide sequences are retained upon conjugation of PEG and that they provide the driving force for the formation of the different nanoscale structures which were observed. The possibility of using defined peptide sequences to direct structure formation of synthetic polymers together with the potential of peptide sequences to induce a specific biological response offers interesting prospects for the development of novel self-assembled and biologically active materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two concomitant polymorphic coordination complexes (dark blue - I and black - II) with the formula (Cu2C44H60N4O4) have been synthesized and characterized crystallographically. Magnetic measurements show the presence of a strong antiferromagnetic interaction and the 2J value corresponds extremely well to the theoretically calculated one, indicating the fact that it follows nicely the magneto-structural relationship. Immobilization of the copper(II) complex I on a 2D-hexagonal mesoporous silica showed good catalytic efficiency in the liquid phase partial oxidation of olefins in the presence of TBHP as an oxidant. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric models suggest that the reduction of Hg(II) to Hg(O) by S(W) prolongs the residence time of mercury. The redox reaction was investigated both in the aqueous phase (where the reductant is sulfite) and on particulate matter (where the reductant in SO2(g)). In both cases, one of the ultimate products is HgS. A mechanism is proposed involving formation of Hg(O) followed by mercury-induced disproportionation of SO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenolic compounds in wastewaters are difficult to treat using the conventional biological techniques such as activated sludge processes because of their bio-toxic and recalcitrant properties and the high volumes released from various chemical, pharmaceutical and other industries. In the current work, a modified heterogeneous advanced Fenton process (AFP) is presented as a novel methodology for the treatment of phenolic wastewater. The modified AFP, which is a combination of hydrodynamic cavitation generated using a liquid whistle reactor and the AFP is a promising technology for wastewaters containing high organic content. The presence of hydrodynamic cavitation in the treatment scheme intensifies the Fenton process by generation of additional free radicals. Also, the turbulence produced during the hydrodynamic cavitation process increases the mass transfer rates as well as providing better contact between the pseudo-catalyst surfaces and the reactants. A multivariate design of experiments has been used to ascertain the influence of hydrogen peroxide dosage and iron catalyst loadings on the oxidation performance of the modified AFP. High er TOC removal rates were achieved with increased concentrations of hydrogen peroxide. In contrast, the effect of catalyst loadings was less important on the TOC removal rate under conditions used in this work although there is an optimum value of this parameter. The concentration of iron species in the reaction solution was measured at 105 min and its relationship with the catalyst loadings and hydrogen peroxide level is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to their popularity, dense deployments of wireless local area networks (WLANs) are becoming a common feature of many cities around the world. However, with only a limited number of channels available, the problem of increased interference can severely degrade the performance of WLANs if an effective channel assignment scheme is not employed. Previous studies on channel assignment in WLANs almost always assume that all access points (AP) employ the same channel assignment scheme which is clearly unrealistic. On the other hand, to the best of our knowledge, the interaction between different channel assignment schemes has also not been studied before. Therefore, in this paper, we investigate the effectiveness of our earlier proposed asynchronous channel assignment scheme in these heterogeneous WLANs scenarios. Simulation results show that our proposed scheme is still able to provide robust performance gains even in these scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemistry of Pt nanostructured electrodes is investigated using hydrodynamic modulated voltammetry (HMV). Here a liquid crystal templating process is used to produce platinum-modified electrodes with a range of surface areas (roughness factor 42.4-280.8). The electroreduction of molecular oxygen at these nanostructured platinum surfaces is used to demonstrate the ability of HMV to discriminate between faradaic and nonfaradaic electrode reactions. The HMV approach shows that the reduction of molecular oxygen experiences considerable signal loss within the high pseudocapacitive region of the voltammetry. Evidence for the contribution of the double layer to transient mass transfer events is presented. In addition, a model circuit and appropriate theoretical analysis are used to illustrate the transient responses of a time variant faradaic component. This in conjunction with the experimental evidence shows that, far from being a passive component in this system, the double layer can contribute to HMV faradaic reactions under certain conditions.