36 resultados para Heterogeneous information network


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding how wildlife responds to road and traffic is essential for effective conservation. Yet, not many studies have evaluated how roads influence wildlife in protected areas, particularly within the large iconic African National Parks where tourism is mainly based on sightings from motorized vehicles with the consequent development and intense use of roads. To reduce this knowledge gap, we studied the behavioral response and local spatial distribution of impala Aepyceros melampus along the heterogeneous (with variation in road surface type and traffic intensity) road-network of Kruger National Park (KNP, South Africa). We surveyed different types of roads (paved and unpaved) recording the occurrence of flight responses among sighted impala and describing their local spatial distribution (in relation to the roads). We observed relatively few flight responses (19.5% of 118 observations), suggesting impalas could be partly habituated to vehicles in KNP. In addition, impala local distribution is apparently unaffected by unpaved roads, yet animals seem to avoid the close proximity of paved roads. Overall, our results suggest a negative, albeit small, effect of traffic intensity, and of presence of pavement on roads on the behavior of impala at KNP. Future studies would be necessary to understand how roads influence other species, but our results show that even within a protected area that has been well-visited for a long time, wildlife can still be affected by roads and traffic. This result has ecological (e.g., changes in spatial distribution of fauna) and management implications (e.g., challenges of facilitating wildlife sightings while minimizing disturbance) for protected areas where touristic activities are largely based on driving.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Accessing information, which is spread across multiple sources, in a structured and connected way, is a general problem for enterprises. A unified structure for knowledge representation is urgently needed to enable integration of heterogeneous information resources. Topic Maps seem to be a solution for this problem. The Topic Map technology enables connecting information, through concepts and relationships, and their occurrences across multiple systems. In this paper, we address this problem by describing a framework built on topic maps, to support the current need of knowledge management. New approaches for information integration, intelligent search and topic map exploration are introduced within this framework.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Healthcare organizations are known for their complex and intense information environment. Healthcare information is facilitated via heterogeneous information systems or paper-based sources. Access to the right information under increasing time pressure is extremely challenging. This paper proposes an information architecture for healthcare organizations. It facilitates the provision of the right information to the right person in the right place and time tailored to their requirements. It adapts an abductive reasoning research approach. Organizational semiotics serves as its theoretical underpinning, guiding the data collection process through direct observation in the ophthalmology outpatient clinics of a UK hospital. It results the norm and information objects that form the information architecture. This is modeled by Archimate. The contribution of the information architecture can be seen from organizational, social and technical perspective. It clearly shows how information is facilitated within a healthcare organization, reducing duplicated data entry, and guiding the future technological implementation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Information services play a crucial role in grid environments in that the state information can be used to facilitate the discovery of resources and the services available to meet user requirements, and also to help tune the performance of a grid system. However, the large size and dynamic nature of the grid brings forth a number of challenges for information services. This paper presents PIndex, a grouped peer-to-peer network that can be used for scalable grid information services. PIndex builds on Globus MDS4, but introduces peer groups to dynamically split the large grid information search space into many small sections to enhance its scalability and resilience. PIndex is subsequently modeled with Colored Petri Nets for performance evaluation. The simulation results show that PIndex is scalable and resilient in dealing with a large number of peer nodes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

tWe develop an orthogonal forward selection (OFS) approach to construct radial basis function (RBF)network classifiers for two-class problems. Our approach integrates several concepts in probabilisticmodelling, including cross validation, mutual information and Bayesian hyperparameter fitting. At eachstage of the OFS procedure, one model term is selected by maximising the leave-one-out mutual infor-mation (LOOMI) between the classifier’s predicted class labels and the true class labels. We derive theformula of LOOMI within the OFS framework so that the LOOMI can be evaluated efficiently for modelterm selection. Furthermore, a Bayesian procedure of hyperparameter fitting is also integrated into theeach stage of the OFS to infer the l2-norm based local regularisation parameter from the data. Since eachforward stage is effectively fitting of a one-variable model, this task is very fast. The classifier construc-tion procedure is automatically terminated without the need of using additional stopping criterion toyield very sparse RBF classifiers with excellent classification generalisation performance, which is par-ticular useful for the noisy data sets with highly overlapping class distribution. A number of benchmarkexamples are employed to demonstrate the effectiveness of our proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose an elevation-dependent calibratory method to correct for the water vapour-induced delays over Mt. Etna that affect the interferometric syntheric aperture radar (InSAR) results. Water vapour delay fields are modelled from individual zenith delay estimates on a network of continuous GPS receivers. These are interpolated using simple kriging with varying local means over two domains, above and below 2 km in altitude. Test results with data from a meteorological station and 14 continuous GPS stations over Mt. Etna show that a reduction of the mean phase delay field of about 27% is achieved after the model is applied to a 35-day interferogram. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real-time rainfall monitoring in Africa is of great practical importance for operational applications in hydrology and agriculture. Satellite data have been used in this context for many years because of the lack of surface observations. This paper describes an improved artificial neural network algorithm for operational applications. The algorithm combines numerical weather model information with the satellite data. Using this algorithm, daily rainfall estimates were derived for 4 yr of the Ethiopian and Zambian main rainy seasons and were compared with two other algorithms-a multiple linear regression making use of the same information as that of the neural network and a satellite-only method. All algorithms were validated against rain gauge data. Overall, the neural network performs best, but the extent to which it does so depends on the calibration/validation protocol. The advantages of the neural network are most evident when calibration data are numerous and close in space and time to the validation data. This result emphasizes the importance of a real-time calibration system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The field site network (FSN) plays a central role in conducting joint research within all Assessing Large-scale Risks for biodiversity with tested Methods (ALARM) modules and provides a mechanism for integrating research on different topics in ALARM on the same site for measuring multiple impacts on biodiversity. The network covers most European climates and biogeographic regions, from Mediterranean through central European and boreal to subarctic. The project links databases with the European-wide field site network FSN, including geographic information system (GIS)-based information to characterise the test location for ALARM researchers for joint on-site research. Maps are provided in a standardised way and merged with other site-specific information. The application of GIS for these field sites and the information management promotes the use of the FSN for research and to disseminate the results. We conclude that ALARM FSN sites together with other research sites in Europe jointly could be used as a future backbone for research proposals

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The management of information in engineering organisations is facing a particular challenge in the ever-increasing volume of information. It has been recognised that an effective methodology is required to evaluate information in order to avoid information overload and to retain the right information for reuse. By using, as a starting point, a number of the current tools and techniques which attempt to obtain ‘the value’ of information, it is proposed that an assessment or filter mechanism for information is needed to be developed. This paper addresses this issue firstly by briefly reviewing the information overload problem, the definition of value, and related research work on the value of information in various areas. Then a “characteristic” based framework of information evaluation is introduced using the key characteristics identified from related work as an example. A Bayesian Network diagram method is introduced to the framework to build the linkage between the characteristics and information value in order to quantitatively calculate the quality and value of information. The training and verification process for the model is then described using 60 real engineering documents as a sample. The model gives a reasonable accurate result and the differences between the model calculation and training judgements are summarised as the potential causes are discussed. Finally, several further issues including the challenge of the framework and the implementations of this evaluation assessment method are raised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are still major challenges in the area of automatic indexing and retrieval of digital data. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. Research has been ongoing for a few years in the field of ontological engineering with the aim of using ontologies to add knowledge to information. In this paper we describe the architecture of a system designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deployment of Quality of Service (QoS) techniques involves careful analysis of area including: those business requirements; corporate strategy; and technical implementation process, which can lead to conflict or contradiction between those goals of various user groups involved in that policy definition. In addition long-term change management provides a challenge as these implementations typically require a high-skill set and experience level, which expose organisations to effects such as “hyperthymestria” [1] and “The Seven Sins of Memory”, defined by Schacter and discussed further within this paper. It is proposed that, given the information embedded within the packets of IP traffic, an opportunity exists to augment the traffic management with a machine-learning agent-based mechanism. This paper describes the process by which current policies are defined and that research required to support the development of an application which enables adaptive intelligent Quality of Service controls to augment or replace those policy-based mechanisms currently in use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modified radial basis function (RBF) neural network and its identification algorithm based on observational data with heterogeneous noise are introduced. The transformed system output of Box-Cox is represented by the RBF neural network. To identify the model from observational data, the singular value decomposition of the full regression matrix consisting of basis functions formed by system input data is initially carried out and a new fast identification method is then developed using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator (MLE) for a model base spanned by the largest eigenvectors. Finally, the Box-Cox transformation-based RBF neural network, with good generalisation and sparsity, is identified based on the derived optimal Box-Cox transformation and an orthogonal forward regression algorithm using a pseudo-PRESS statistic to select a sparse RBF model with good generalisation. The proposed algorithm and its efficacy are demonstrated with numerical examples.