17 resultados para Hanson
Resumo:
This study compared the effect of supplementing maize stover (MS) with cowpea (Vigna unguiculata) haulms or commercial concentrate (CC) on feed intake, nutrient digestibility, live weight gain and carcass yield of male Ethiopian Highland sheep. Two cowpea genotypes, 12688 (forage) and IT96D-774 (dual-purpose), were used. A randomised block design was applied with groups of eight sheep, blocked by weight, allocated to one of six treatments; MS ad libitum either unsupplemented or supplemented daily with 150 or 300g dry matter (DM) of either cowpea or CC. MS contained more neutral detergent fibre (NDF), acid detergent fibre (ADF) and lignin than either cowpeas or CC Crude protein (CP) content of the forage-type cowpeas was higher than either dual-purpose or CC, while MS had the lowest CP content Relative to the negative control group, cowpea at either level significantly (P < 0.01) increased both MS intake and total NDF and lignin. Supplementation significantly (P < 0.01) increased nitrogen (N) intakes relative to the negative control, with N intake for CC and dual-purpose cowpea (high level) being similar to the intakes for cowpeas at 150g. N intake with the forage-type cowpea offered at higher levels was significantly (P < 0.01) greater than the other groups. No significant differences (P > 0.01) in MS intake were identified between cowpeas at either level or CC and, although intake level of CC increased, it did not differ significantly from the negative control group. Supplementation significantly (P < 0.01) improved average daily gain, with the negative control group losing weight over the experimental period, and increased final live weight, carcass cold weight and dressing percentage. Supplementation significantly improved the apparent digestibility of DM, organic matter and NDF, with no significant difference found between cowpeas at either level. N retention was negative for sheep offered only MS, but positive with all supplements, with cowpeas improving N retention to a greater extent than CC. Interestingly, N retention/N intake was higher with cowpeas offered at the lower level suggesting an improvement in utilisation efficiency. The results indicate that the supplementation of MS with cowpea enhanced ruminant production through improvements in digestibility and intake. Further, as production improvements associated with the two levels of supplementation did not differ significantly, it is suggested that where limited quantities of cowpea are available, it may be of greater nutritional benefit to offer smaller quantities over an increased number of animal days.
Resumo:
A new drug delivery method for infants is presented which incorporates an active pharmaceutical ingredient (API)-loaded insert into a nipple shield delivery system (NSDS). The API is released directly into milk during breastfeeding. This study investigates the feasibility of using the NSDS to deliver the microbicide sodium dodecyl sulfate (SDS), with the goal of preventing mother-to-child transmission (MTCT) of HIV during breastfeeding in low-resource settings, when there is no safer alternative for the infant but to breastfeed. SDS has been previously shown to effectively inactivate HIV in human milk. An apparatus was developed to simulate milk flow through and drug release from a NSDS. Using this apparatus milk was pulsed through a prototype device containing a non-woven fiber insert impregnated with SDS and the microbicide was rapidly released. The total SDS release from inserts ranged from 70 to 100% of the average 0.07 g load within 50 ml (the volume of a typical breastfeed). Human milk spiked with H9/HIVIIIB cells was also passed through the same set-up. Greater than 99% reduction of cell-associated HIV infectivity was achieved in the first 10 ml of milk. This proof of concept study demonstrates efficient drug delivery to breastfeeding infants is achievable using the NSDS.
Resumo:
It is thought that speciation in phytophagous insects is often due to colonization of novel host plants, because radiations of plant and insect lineages are typically asynchronous. Recent phylogenetic comparisons have supported this model of diversification for both insect herbivores and specialized pollinators. An exceptional case where contemporaneous plant insect diversification might be expected is the obligate mutualism between fig trees (Ficus species, Moraceae) and their pollinating wasps (Agaonidae, Hymenoptera). The ubiquity and ecological significance of this mutualism in tropical and subtropical ecosystems has long intrigued biologists, but the systematic challenge posed by >750 interacting species pairs has hindered progress toward understanding its evolutionary history. In particular, taxon sampling and analytical tools have been insufficient for large-scale co-phylogenetic analyses. Here, we sampled nearly 200 interacting pairs of fig and wasp species from across the globe. Two supermatrices were assembled: on average, wasps had sequences from 77% of six genes (5.6kb), figs had sequences from 60% of five genes (5.5 kb), and overall 850 new DNA sequences were generated for this study. We also developed a new analytical tool, Jane 2, for event-based phylogenetic reconciliation analysis of very large data sets. Separate Bayesian phylogenetic analyses for figs and fig wasps under relaxed molecular clock assumptions indicate Cretaceous diversification of crown groups and contemporaneous divergence for nearly half of all fig and pollinator lineages. Event-based co-phylogenetic analyses further support the co-diversification hypothesis. Biogeographic analyses indicate that the presentday distribution of fig and pollinator lineages is consistent with an Eurasian origin and subsequent dispersal, rather than with Gondwanan vicariance. Overall, our findings indicate that the fig-pollinator mutualism represents an extreme case among plant-insect interactions of coordinated dispersal and long-term co-diversification.
Resumo:
Through close readings of Ann Hawkshaw's poetry in the context of industrial Manchester in the 1840s, this article highlights the interaction of form and content in poetry that makes use of the idea of the past to question or complicate the politics of the present.
Resumo:
Outflowing ions from the polar ionosphere fall into two categories: the classical polar wind and the suprathermal ion flows. The flows in both these categories vary a great deal with altitude. The classical polar wind is supersonic at high altitude: at ∼3 RE geocentric, the observed polar wind is H+ dominated and has a Mach number of 2.5–5.1. At 400–600 km, thermal and suprathermal upward O+ ion fluxes frequently occur at the poleward edge of the nightside auroral oval during magnetically active times. Above 500 km, ions are accelerated transverse to the local geomagnetic field. At 1400 km, transversely accelerated ions are frequently observed in winter nights but rarely appear in the summer. In the dayside cleft above ∼2000 km, ions of all species are transversely heated and upwell with significant number and heat fluxes, forming a cleft ion fountain as they convect across the polar cap. Upwelling ions are observed most (least) frequently in the summer (winter). At yet higher altitudes, energetic (>10 eV to several kiloelectron volts) upflowing H+ and O+ ions are frequently observed, their active time occurrence frequency being as high as 0.7 at auroral latitudes and 0.3 in the polar cap. Their composition, intensity, and angular characteristics vary quantitatively with solar activity, being O+ dominant and more intense near solar maximum. Their resulting ion outflow is dominated by ions below 1 keV and reaches 3.5×10^26 O+ and 7×10^25 H+ ions s^{−1} at magnetically active times (Kp≥5) near solar maximum. In comparison, the estimated polar wind ion outflow at times of moderate solar activity is 7×10^25H+ and 4×10^24 He+ ions s^{−1}. The estimated <10-eV cleft ion fountain flow is 3.8×10^25 O+ and 8.6×10^23 H+ ions s^{−1} near solar maximum.
Resumo:
Resistance to the innate defences of the intestine is crucial for the survival and carriage of Staphylococcus aureus, a common coloniser of the human gut. Bile salts produced by the liver and secreted into the intestines are one such group of molecules with potent anti-microbial activity. The mechanisms by which S. aureus is able to resist such defences in order to colonize and survive in the human gut are unknown. Here we show that mnhF confers resistance to bile salts, which can be abrogated by efflux pump inhibitors. MnhF mediates efflux of radiolabelled cholic acid in both S. aureus and when heterologously expressed in Escherichia coli, rendering them resistant. Deletion of mnhF attenuated survival of S. aureus in an anaerobic three stage continuous culture model of the human colon (gut model), which represent different anatomical areas of the large intestine.