16 resultados para Hahn, August, 1792-1863.
Resumo:
The Bonin high is a subtropical anticyclone that is predominant near Japan in the summer. This anticyclone is associated with an equivalent-barotropic structure, often extending throughout the entire troposphere. Although the equivalent-barotropic structure of the Bonin high has been known for years among synopticians because of its importance to the summer climate in east Asia, there are few dynamical explanations for such a structure. The present paper attempts to provide a formation mechanism for the deep ridge near Japan. We propose a new hypothesis that this equivalent-barotropic ridge near Japan is formed as a result of the propagation of stationary Rossby waves along the Asian jet in the upper troposphere (‘the Silk Road pattern’). First, the monthly mean climatology is examined in order to demonstrate this hypothesis. It is shown that the enhanced Asian jet in August is favourable for the propagation of stationary Rossby waves and that the regions of descent over the eastern Mediterranean Sea and the Aral Sea act as two major wave sources. Second, a primitive-equation model is used to simulate the climatology of August. The model successfully simulates the Bonin high with an equivalent-barotropic structure. The upper-tropospheric ridge is found to be enhanced by a height anomaly of more than 80 m at 200 hPa, when a wave packet arrives. Sensitivity experiments are conducted to show that the removal of the diabatic cooling over the Asian jet suppresses the Silk Road pattern and formation of an equivalent-barotropic ridge near Japan, while the removal of the diabatic heating in the western Pacific does not. Copyright © 2003 Royal Meteorological Society
Resumo:
Lava domes comprise core, carapace, and clastic talus components. They can grow endogenously by inflation of a core and/or exogenously with the extrusion of shear bounded lobes and whaleback lobes at the surface. Internal structure is paramount in determining the extent to which lava dome growth evolves stably, or conversely the propensity for collapse. The more core lava that exists within a dome, in both relative and absolute terms, the more explosive energy is available, both for large pyroclastic flows following collapse and in particular for lateral blast events following very rapid removal of lateral support to the dome. Knowledge of the location of the core lava within the dome is also relevant for hazard assessment purposes. A spreading toe, or lobe of core lava, over a talus substrate may be both relatively unstable and likely to accelerate to more violent activity during the early phases of a retrogressive collapse. Soufrière Hills Volcano, Montserrat has been erupting since 1995 and has produced numerous lava domes that have undergone repeated collapse events. We consider one continuous dome growth period, from August 2005 to May 2006 that resulted in a dome collapse event on 20th May 2006. The collapse event lasted 3 h, removing the whole dome plus dome remnants from a previous growth period in an unusually violent and rapid collapse event. We use an axisymmetrical computational Finite Element Method model for the growth and evolution of a lava dome. Our model comprises evolving core, carapace and talus components based on axisymmetrical endogenous dome growth, which permits us to model the interface between talus and core. Despite explicitly only modelling axisymmetrical endogenous dome growth our core–talus model simulates many of the observed growth characteristics of the 2005–2006 SHV lava dome well. Further, it is possible for our simulations to replicate large-scale exogenous characteristics when a considerable volume of talus has accumulated around the lower flanks of the dome. Model results suggest that dome core can override talus within a growing dome, potentially generating a region of significant weakness and a potential locus for collapse initiation.
Resumo:
During many lava dome-forming eruptions, persistent rockfalls and the concurrent development of a substantial talus apron around the foot of the dome are important aspects of the observed activity. An improved understanding of internal dome structure, including the shape and internal boundaries of the talus apron, is critical for determining when a lava dome is poised for a major collapse and how this collapse might ensue. We consider a period of lava dome growth at the Soufrière Hills Volcano, Montserrat, from August 2005 to May 2006, during which a 100 × 106 m3 lava dome developed that culminated in a major dome-collapse event on 20 May 2006. We use an axi-symmetrical Finite Element Method model to simulate the growth and evolution of the lava dome, including the development of the talus apron. We first test the generic behaviour of this continuum model, which has core lava and carapace/talus components. Our model describes the generation rate of talus, including its spatial and temporal variation, as well as its post-generation deformation, which is important for an improved understanding of the internal configuration and structure of the dome. We then use our model to simulate the 2005 to 2006 Soufrière Hills dome growth using measured dome volumes and extrusion rates to drive the model and generate the evolving configuration of the dome core and carapace/talus domains. The evolution of the model is compared with the observed rockfall seismicity using event counts and seismic energy parameters, which are used here as a measure of rockfall intensity and hence a first-order proxy for volumes. The range of model-derived volume increments of talus aggraded to the talus slope per recorded rockfall event, approximately 3 × 103–13 × 103 m3 per rockfall, is high with respect to estimates based on observed events. From this, it is inferred that some of the volumetric growth of the talus apron (perhaps up to 60–70%) might have occurred in the form of aseismic deformation of the talus, forced by an internal, laterally spreading core. Talus apron growth by this mechanism has not previously been identified, and this suggests that the core, hosting hot gas-rich lava, could have a greater lateral extent than previously considered.
Resumo:
The building of the Berlin Wall on 13 August 1961 had repercussions not only on the international scene, but also for the power relationship between state and society in the German Democratic Republic. This article considers the short-, medium- and long-term reactions of the East German population to the border closure from a personal and political perspective, examining key groups such as educated elites, workers, and young people. The closed society elicited a new deference in the short term, but the author argues for considerable continuities of low-level disruptive behavior before and after 13 August. In the longer term, there was a generation born behind the Wall which by simple habituation rather than a conscious decision was forced to accept the new contours of the geopolitical landscape created by the Wall.
Resumo:
Limnologists had an early preoccupation with lake classification. It gave a necessary structure to the many chemical and biological observations that were beginning to form the basis of one of the earliest truly environmental sciences. August Thienemann was the doyen of such classifiers and his concept with Einar Naumann of oligotrophic and eutrophic lakes remains central to the world-view that limnologists still have. Classification fell into disrepute, however, as it became clear that there would always be lakes that deviated from the prescriptions that the classifiers made for them. Continua became the de rigeur concept and lakes were seen as varying along many chemical, biological and geographic axes. Modern limnologists are comfortable with this concept. That all lakes are different guarantees an indefinite future for limnological research. For those who manage lakes and the landscapes in which they are set, however, it is not very useful. There may be as many as 300000 standing water bodies in England and Wales alone and maybe as many again in Scotland. More than 80 000 are sizable (> 1 ha). Some classification scheme to cope with these numbers is needed and, as human impacts on them increase, a system of assessing and monitoring change must be built into such a scheme. Although ways of classifying and monitoring running waters are well developed in the UK, the same is not true of standing waters. Sufficient understanding of what determines the nature and functioning of lakes exists to create a system which has intellectual credibility as well as practical usefulness. This paper outlines the thinking behind a system which will be workable on a north European basis and presents some early results.
Resumo:
In the first part of this paper (Ulbrich et al. 2003), we gave a description of the August 2002 rainfall events and the resultant floods, in particular of the flood wave of the River Elbe. The extreme precipitation sums observed in the first half of the month were primarily associated with two rainfall episodes. The first episode occurred on 6/7 August 2002. The main rainfall area was situated over Lower Austria, the south-western part of the Czech Republic and south-eastern Germany. A severe flash flood was produced in the Lower Austrian Waldviertel (`forest quarter’ ). The second episode on 11± 13 August 2002 most severely affected the Erz Mountains and western parts of the Czech Republic. During this second episode 312mm of rain was recorded between 0600GMT on 12 August and 0600GMT on 13 August at the Zinnwald weather station in the ErzMountains, which is a new 24-hour record for Germany. The flash floods resulting from this rainfall episode and the subsequent Elbe flood produced the most expensive weatherrelated catastrophe in Europe in recent decades. In this part of the paper we discuss the meteorological conditions and physical mechanisms leading to the two main events. Similarities to the conditions that led to the recent summer floods of the River Oder in 1997 and the River Vistula in 2001 will be shown. This will lead us to a consideration of trends in extreme rainfall over Europe which are found in numerical simulations of anthropogenic climate change.
Resumo:
Record-breaking rainfall amounts and intensities were observed at several raingauges in central Europe during the first half of August 2002 (Fig. 1). They produced flash floods in small rivers in the Erz Mountains, the Bohemian Forest and in Lower Austria (see Fig. 2), followed by record-breaking floods of larger rivers fed from these areas. The Vltava submerged parts of the city of Prague on 13± 15 August, and subsequently the Elbe flooded parts of Dresden and further villages and towns located downstream. The gauge level of 9.40m measured at Dresden on 17 August 2002 is the highest level since 1275, exceeding the former maximum level of 8.77m recorded in 1845 (Grollmann and Simon 2002). Parts of the Danube catchment were also affected by severe flooding. There were 100 fatalities connected with the floods in central Europe, and the economic loss is estimated at 9 billion Euros for Germany (German government’s estimate), 3 billion Euros for Austria, and 2.5 billion Euros for the Czech Republic (estimates from Boyle 2002). The event thus replaced the European winter storm Lothar of December 1999 (Ulbrich et al. 2001) as the most expensive weather-related catastrophe in Europe in recent decades (see Cornford 2002). In this study, we give an overview of the exceptional rainfall experienced over wide areas on 12/13 August 2002, and the resulting floods. Further events during early August 2002, in particular the event on 6/7 August in Lower Austria, are briefly mentioned.
Resumo:
A Landmark Case is one which stands out from other less remarkable cases. Landmark status is generally accorded because the case marks the beginning or the end of a course of legal development. Taylor v Caldwell is regarded as a landmark case because it marks the beginning of a legal development: the introduction of the doctrine of frustration into English contract law. This chapter explores the legal and historical background to the case to ascertain if it is a genuine landmark. A closer scrutiny reveals that while the legal significance of the case is exaggerated, the historical significance of the cases reveals an unknown irony: the case is a suitable landmark to the frustration of human endeavours. While the existence of the Surrey Music Hall was brief, it brought insanity, imprisonment, bankruptcy and death to its creators.
Resumo:
Swept-frequency (1-10 MHz) ionosonde measurements were made at Helston, Cornwall (50 degrees 06'N, 5 degrees 18'W) during the total solar eclipse on August 11, 1999. Soundings were made every three minutes. We present a method for estimating the percentage of the ionising solar radiation which remains unobscured at any time during the eclipse by comparing the variation of the ionospheric E-layer with the behaviour of the layer during a control day. Application to the ionosonde date for II August, 1999, shows that the flux of solar ionising radiation fell to a minimum of 25 +/- 2% of the value before and after the eclipse. For comparison, the same technique was also applied to measurements made during the total solar eclipse of 9 July, 1945, at Sormjole (63 degrees 68'N, 20 degrees 20'E) and yielded a corresponding minimum of 16 +/- 2%. Therefore the method can detect variations in the fraction of solar emissions that originate from the unobscured corona and chromosphere. We discuss the differences between these two eclipses in terms of the nature of the eclipse, short-term fluctuations, the sunspot cycle and the recently-discovered long-term change in the coronal magnetic field.