40 resultados para H-1 MAS NMR
Resumo:
Adipose tissue is a major storage site for lipophilic environmental contaminants. The environmental metabolic disruptor hypothesis postulates that some pollutants can promote obesity or metabolic disorders by activating nuclear receptors involved in the control of energetic homeostasis. In this context, monoethylhexyl phthalate (MEHP) is of particular concern since it was shown to activate the peroxisome proliferator-activated receptor γ (PPARγ) in 3T3-L1 murine preadipocytes. In the present work, we used an untargeted, combined transcriptomic-(1)H NMR-based metabonomic approach to describe the overall effect of MEHP on primary cultures of human subcutaneous adipocytes differentiated in vitro. MEHP stimulated rapidly and selectively the expression of genes involved in glyceroneogenesis, enhanced the expression of the cytosolic phosphoenolpyruvate carboxykinase, and reduced fatty acid release. These results demonstrate that MEHP increased glyceroneogenesis and fatty acid reesterification in human adipocytes. A longer treatment with MEHP induced the expression of genes involved in triglycerides uptake, synthesis, and storage; decreased intracellular lactate, glutamine, and other amino acids; increased aspartate and NAD, and resulted in a global increase in triglycerides. Altogether, these results indicate that MEHP promoted the differentiation of human preadipocytes to adipocytes. These mechanisms might contribute to the suspected obesogenic effect of MEHP.
Resumo:
Reaction of 5,6-dihydro-5,6-epoxy-1,10-phenanthroline (L) with Cu(ClO(4))(2)center dot 6H(2)O in methanol in 3:1 M ratio at room temperature yields light green [CuL(3)](ClO(4))(2)center dot H(2)O (1). The X-ray crystal structure of the hemi acetonitrile solvate [CuL(3)](ClO(4))(2)center dot 0.5CH(3)CN has been determined which shows Jahn-Teller distortion in the CuN(6) core present in the cation [CuL(3)](2+). Complex 1 gives an axial EPR spectrum in acetonitrile-toluene glass with g(parallel to) = 2.262 (A(parallel to) = 169 x 10 (4) cm (1)) and g(perpendicular to) = 2.069. The Cu(II/I) potential in 1 in CH(2)Cl(2) at a glassy carbon electrode is 0.32 V versus NHE. This potential does not change with the addition of extra L in the medium implicating generation of a six-coordinate copper(I) species [CuL(3)](+) in solution. B3LYP/LanL2DZ calculations show that the six Cu-N bond distances in [CuL(3)](+) are 2.33, 2.25, 2.32, 2.25, 2.28 and 2.25 angstrom while the ideal Cu(I)-N bond length in a symmetric Cu(I)N(6) moiety is estimated as 2.25 angstrom. Reaction of L with Cu(CH(3)CN)(4)ClO(4) in dehydrated methanol at room temperature even in 4:1 M proportion yields [CuL(2)]ClO(4) (2). Its (1)H NMR spectrum indicates that the metal in [CuL(2)](+) is tetrahedral. The Cu(II/I) potential in 2 is found to be 0.68 V versus NHE in CH(2)Cl(2) at a glassy carbon electrode. In presence of excess L, 2 yields the cyclic voltammogram of 1. From (1)H NMR titration, the free energy of binding of L to [CuL(2)](+) to produce [CuL(3)](+) in CD(2)Cl(2) at 298 K is estimated as -11.7 (+/-0.2) kJ mol (1).
Resumo:
A two by two experimental study has been designed to determine the effect of gut microbiota on energy metabolism in mouse models. The metabolic phenotype of germ-free (GF, n = 20) and conventional (n = 20) mice was characterized using a NMR spectroscopy-based metabolic profiling approach, with a focus on sexual dimorphism (20 males, 20 females) and energy metabolism in urine, plasma, liver, and brown adipose tissue (BAT). Physiological data of age-matched GF and conventional mice showed that male animals had a higher weight than females in both groups. In addition, conventional males had a significantly higher total body fat content (TBFC) compared to conventional females, whereas this sexual dimorphism disappeared in GF animals (i.e., male GF mice had a TBFC similar to those of conventional and GF females). Profiling of BAT hydrophilic extracts revealed that sexual dimorphism in normal mice was absent in GF animals, which also displayed lower BAT lactate levels and higher levels of (D)-3-hydroxybutyrate in liver, plasma, and BAT, together with lower circulating levels of VLDL. These data indicate that the gut microbiota modulate the lipid metabolism in BAT, as the absence of gut microbiota stimulated both hepatic and BAT lipolysis while inhibiting lipogenesis. We also demonstrated that (1)H NMR metabolic profiles of BAT were excellent predictors of BW and TBFC, indicating the potential of BAT to fight against obesity.
Resumo:
The time-course of metabolic events following response to a model hepatotoxin ethionine (800 mg/kg) was investigated over a 7 day period in rats using high-resolution (1)H NMR spectroscopic analysis of urine and multivariate statistics. Complementary information was obtained by multivariate analysis of (1)H MAS NMR spectra of intact liver and by conventional histopathology and clinical chemistry of blood plasma. (1)H MAS NMR spectra of liver showed toxin-induced lipidosis 24 h postdose consistent with the steatosis observed by histopathology, while hypertaurinuria was suggestive of liver injury. Early biochemical changes in urine included elevation of guanidinoacetate, suggesting impaired methylation reactions. Urinary increases in 5-oxoproline and glycine suggested disruption of the gamma-glutamyl cycle. Signs of ATP depletion together with impairment of the energy metabolism were given from the decreased levels in tricarboxylic acid cycle intermediates, the appearance of ketone bodies in urine, the depletion of hepatic glucose and glycogen, and also hypoglycemia. The observed increase in nicotinuric acid in urine could be an indication of an increase in NAD catabolism, a possible consequence of ATP depletion. Effects on the gut microbiota were suggested by the observed urinary reductions in the microbial metabolites 3-/4-hydroxyphenyl propionic acid, dimethylamine, and tryptamine. At later stages of toxicity, there was evidence of kidney damage, as indicated by the tubular damage observed by histopathology, supported by increased urinary excretion of lactic acid, amino acids, and glucose. These studies have given new insights into mechanisms of ethionine-induced toxicity and show the value of multisystem level data integration in the understanding of experimental models of toxicity or disease.
Resumo:
Background The process of weaning causes a major shift in intestinal microbiota and is a critical period for developing appropriate immune responses in young mammals.Objective To use a new systems approach to provide an overview of host metabolism and the developing immune system in response to nutritional intervention around the weaning period.Design Piglets (n=14) were weaned onto either an egg-based or soya-based diet at 3 weeks until 7 weeks, when all piglets were switched onto a fish-based diet. Half the animals on each weaning diet received Bifidobacterium lactis NCC2818 supplementation from weaning onwards. Immunoglobulin production from immunologically relevant intestinal sites was quantified and the urinary (1)H NMR metabolic profile was obtained from each animal at post mortem (11 weeks).Results Different weaning diets induced divergent and sustained shifts in the metabolic phenotype, which resulted in the alteration of urinary gut microbial co-metabolites, even after 4 weeks of dietary standardisation. B lactis NCC2818 supplementation affected the systemic metabolism of the different weaning diet groups over and above the effects of diet. Additionally, production of gut mucosa-associated IgA and IgM was found to depend upon the weaning diet and on B lactis NCC2818 supplementation.ConclusionThe correlation of urinary (1)H NMR metabolic profile with mucosal immunoglobulin production was demonstrated, thus confirming the value of this multi-platform approach in uncovering non-invasive biomarkers of immunity. This has clear potential for translation into human healthcare with the development of urine testing as a means of assessing mucosal immune status. This might lead to early diagnosis of intestinal dysbiosis and with subsequent intervention, arrest disease development. This system enhances our overall understanding of pathologies under supra-organismal control.
Resumo:
Objective: Proper interactions between the intestinal mucosa, gut microbiota and nutrient flow are required to establish homoeostasis of the host. Since the proximal part of the small intestine is the first region where these interactions occur, and since most of the nutrient absorption occurs in the jejunum, it is important to understand the dynamics of metabolic responses of the mucosa in this intestinal region.Design: Germ-free mice aged 8-10 weeks were conventionalised with faecal microbiota, and responses of the jejunal mucosa to bacterial colonisation were followed over a 30-day time course. Combined transcriptome, histology, (1)H NMR metabonomics and microbiota phylogenetic profiling analyses were used.Results: The jejunal mucosa showed a two-phase response to the colonising microbiota. The acute-phase response, which had already started 1 day after conventionalisation, involved repression of the cell cycle and parts of the basal metabolism. The secondary-phase response, which was consolidated during conventionalisation (days 4-30), was characterised by a metabolic shift from an oxidative energy supply to anabolic metabolism, as inferred from the tissue transcriptome and metabonome changes. Detailed transcriptome analysis identified tissue transcriptional signatures for the dynamic control of the metabolic reorientation in the jejunum. The molecular components identified in the response signatures have known roles in human metabolic disorders, including insulin sensitivity and type 2 diabetes mellitus.Conclusion: This study elucidates the dynamic jejunal response to the microbiota and supports a prominent role for the jejunum in metabolic control, including glucose and energy homoeostasis. The molecular signatures of this process may help to find risk markers in the declining insulin sensitivity seen in human type 2 diabetes mellitus, for instance.
Resumo:
Treatment of of (R,R)-N,N-salicylidene cyclohexane 1,2-diamine(H(2)L(1)) in methanol with aqueous NH(4)VO(3) solution in perchloric acid medium affords the mononuclear oxovanadium(V) complex [VOL(1)(MeOH)]-ClO(4) (1) as deep blue solid while the treatment of same solution of (R,R)-N,N-salicylidene cyclohexane 1,2-diamine(H(2)L(1)) with aqueous solution of VOSO(4) leads to the formation of di-(mu-oxo) bridged vanadium(V) complex [VO(2)L(2)](2) (2) as green solid where HL(2) = (R,R)-N-salicylidene cyclohexane 1,2-diamine. The ligand HL(2) is generated in situ by the hydrolysis of one of the imine bonds of HL(1) ligand during the course of formation of complex [VO(2)L(2)](2) (2). Both the compounds have been characterized by single crystal X-ray diffraction as well as spectroscopic methods. Compounds 1 and 2 are to act as catalyst for the catalytic bromide oxidation and C-H bond oxidation in presence of hydrogen peroxide. The representative substrates 2,4-dimethoxy benzoic acid and para-hydroxy benzoic acids are brominated in presence of H(2)O(2) and KBr in acid medium using the above compounds as catalyst. The complexes are also used as catalyst for C-H bond activation of the representative hydrocarbons toluene, ethylbenzene and cyclohexane where hydrogen peroxide acts as terminal oxidant. The yield percentage and turnover number are also quite good for the above catalytic reaction. The oxidized products of hydrocarbons have been characterized by GC Analysis while the brominated products have been characterized by (1)H NMR spectroscopic studies.
Resumo:
An NMR-based pharmacometabonomic approach was applied to investigate inter-animal variation in response to isoniazid (INH; 200 and 400 mg/kg) in male Sprague-Dawley rats, alongside complementary clinical chemistry and histopathological analysis. Marked inter-animal variability in central nervous system (CNS) toxicity was identified following administration of a high dose of INH, which enabled characterization of CNS responders and CNS non-responders. High-resolution post-dose urinary (1)H NMR spectra were modeled both by their xenobiotic and endogenous metabolic information sets, enabling simultaneous identification of the differential metabolic fate of INH and its associated endogenous metabolic consequences in CNS responders and CNS non-responders. A characteristic xenobiotic metabolic profile was observed for CNS responders, which revealed higher urinary levels of pyruvate isonicotinylhydrazone and β-glucosyl isonicotinylhydrazide and lower levels of acetylisoniazid compared to CNS non-responders. This suggested that the capacity for acetylation of INH was lower in CNS responders, leading to increased metabolism via conjugation with pyruvate and glucose. In addition, the endogenous metabolic profile of CNS responders revealed higher urinary levels of lactate and glucose, in comparison to CNS non-responders. Pharmacometabonomic analysis of the pre-dose (1)H NMR urinary spectra identified a metabolic signature that correlated with the development of INH-induced adverse CNS effects and may represent a means of predicting adverse events and acetylation capacity when challenged with high dose INH. Given the widespread use of INH for the treatment of tuberculosis, this pharmacometabonomic screening approach may have translational potential for patient stratification to minimize adverse events.
Resumo:
Increasing evidence suggests that obesity is a chronic inflammatory disease, in which adipose tissue is involved in a network of endocrine signals to modulate energy homeostasis. These oxidative-inflammatory pathways, which are associated with cardiovascular complications, are also observed during the aging process. In this study, we investigated the interaction between aging and the development of obesity in a hyperphagic rat model. Metabolic profiles of the liver, white adipose tissue (WAT) and heart from young and adult Zucker lean (fa/+) and obese (fa/fa) rats were characterized using a (1)H NMR-based metabonomics approach. We observed premature metabolic modifications in all studied organs in obese animals, some of which were comparable to those observed in adult lean animals. In the cardiac tissue, young obese rats displayed lower lactate and scyllo-inositol levels associated with higher creatine, choline and phosphocholine levels, indicating an early modulation of energy and membrane metabolism. An early alteration of the hepatic methylation and transsulfuration pathways in both groups of obese rats indicated that these pathways were affected before diabetic onset. These findings therefore support the hypothesis that obesity parallels some metabolic perturbations observed in the aging process and provides new insights into the metabolic modifications occurring in pre-diabetic state.
Resumo:
We investigated the short-term (7 days) and long-term (60 days) metabolic effect of high fat diet induced obesity (DIO) and weight gain in isogenic C57BL/6 mice and examined the specific metabolic differentiation between mice that were either strong-responders (SR), or non-responders (NR) to weight gain. Mice (n = 80) were fed a standard chow diet for 7 days prior to randomization into a high-fat (HF) (n = 56) or a low-fat (LF) (n = 24) diet group. The (1)H NMR urinary metabolic profiles of LF and HF mice were recorded 7 and 60 days after the diet switch. On the basis of the body weight gain (BWG) distribution of HF group, we identified NR mice (n = 10) and SR mice (n = 14) to DIO. Compared with LF, HF feeding increased urinary excretion of glycine conjugates of β-oxidation intermediate (hexanoylglycine), branched chain amino acid (BCAA) catabolism intermediates (isovalerylglycine, α-keto-β-methylvalerate and α-ketoisovalerate) and end-products of nicotinamide adenine dinucleotide (NAD) metabolism (N1-methyl-2-pyridone-5-carboxamide, N1-methyl-4-pyridone-3-carboxamide) suggesting up-regulation of mitochondrial oxidative pathways. In the HF group, NR mice excreted relatively more hexanoylglycine, isovalerylglycine, and fewer tricarboxylic acid (TCA) cycle intermediate (succinate) in comparison to SR mice. Thus, subtle regulation of ketogenic pathways in DIO may alleviate the saturation of the TCA cycle and mitochondrial oxidative metabolism.
Resumo:
Bis-triazinylphenanthroline ligands (BTPhens), which contain additional alkyl (n-butyl and sec-butyl) groups attached to the triazine rings, have been synthesized, and the effects of this alkyl substitution on their extraction properties with Ln(III) and An(III) cations in simulated nuclear waste solutions have been studied. The speciation of n-butyl-substituted ligand (C4- BTPhen) with some trivalent lanthanide nitrates was elucidated by 1 H-NMR spectroscopic titrations. These experiments have shown that the dominant species in solution were the 1:2 complexes [Ln(III)(BTPhen)2], even at higher Ln(III) concentrations, and the relative stability of 2:1 to 1:1 BTPhen-Ln(III) complexes varied with different lanthanides. As expected, sec-butylsubstituted ligand (sec-C4 BTPhen) showed higher solubility than C4-BTPhen in certain diluents. A greater separation factor (SFAm/Eu = ca. 210) was observed for sec-C4-BTPhen compared to C4-BTPhen (SFAm/Eu = ca. 125) in 1-octanol at 4 M HNO3 solutions. The greater separation factor may be due to the higher solubility of the 2:1 complex for sec-C4-BTPhen at the interface than the 1:1 complex of C4-BTPhen.
Resumo:
Nuclear mnagnetic resonance (NMR) spectroscopy involves the excitation of nuclei by electromagnetic radiation in the radio-frequency range of the electromagnetic spectrum. For a nucleus to absorb energy from radiowaves in this way, it must hve the quantum mechanical property of spin. A spinning nucleus, such as that of the hydrogen atom, will dopt one f only two possible states when placed in a magnetic field. (In NMR, the hydrogen nucleus is often referred to as a proton, and is given the abbreviation 1H.) Az the strength of the magnetic field is increased, there is a proportional increase in the energy 'gap' between these two states. We can predic the resonant frequency at which any spinning nucleus will absorb energy from radio-frequency radiation as it jumps from the lower energy state to the upper state.
Resumo:
N-Arylsulfonamides of (R)- and (S)-2-amino-1-butanol, on condensation with aromatic aldehydes produced diastereomerically pure 2-aryl-3-arenesulfonyl 4-ethyl-1,3-oxazolidines. The absolute configurations of one enantiomeric pair have been determined from two fully refined X-ray structures, supplemented by nmr data.
Resumo:
The nematode Caenorhabditis elegans expresses two metallothioneins (MTs), CeMT-1 and CeMT-2, that are believed to be key players in the protection against metal toxicity. In this study, both isoforms were expressed in vitro in the presence of either Zn(II) or Cd(II). Metal binding stoichiometries and affinities were determined by ESI-MS and NMR, respectively. Both isoforms had equal zinc binding ability, but differed in their cadmium binding behaviour, with higher affinity found for CeMT-2. In addition, wild-type C. elegans, single MT knockouts and a double MT knockout allele were exposed to zinc (340 μm) or cadmium (25 μm) to investigate effects in vivo. Zinc levels were significantly increased in all knockout strains, but were most pronounced in the CeMT-1 knockout, mtl-1 (tm1770), while cadmium accumulation was highest in the CeMT-2 knockout, mtl-2 (gk125) and the double knockout mtl-1;mtl-2 (zs1). In addition, metal speciation was assessed by X-ray absorption fine-structure spectroscopy. This showed that O-donating, probably phosphate-rich, ligands play a dominant role in maintaining the physiological concentration of zinc, independently of metallothionein status. In contrast, cadmium was shown to coordinate with thiol groups, and the cadmium speciation of the wild-type and the CeMT-2 knockout strain was distinctly different to the CeMT-1 and double knockouts. Taken together, and supported by a simple model calculation, these findings show for the first time that the two MT isoforms have differential affinities towards Cd(II) and Zn(II) at a cellular level, and this is reflected at the protein level. This suggests that the two MT isoforms have distinct in vivo roles.
Resumo:
The NMR structure of a central segment of the previously annotated "SARS-unique domain" (SUD-M; "middle of the SARS-unique domain") in the SARS coronavirus (SARS-CoV) non-structural protein 3 (nsp3) has been determined. SUD-M(513-651) exhibits a macrodomain fold containing the nsp3-residues 528-648, and there is a flexibly extended N-terminal tail with the residues 513-527 and a C-terminal flexible tail of residues 649-651. As a follow-up to this initial result, we also solved the structure of a construct representing only the globular domain of residues 527-651 [SUD-M(527-651)]. NMR chemical shift perturbation experiments showed that SUD-M(527-651) binds single-stranded poly-A and identified the contact area with this RNA on the protein surface, and electrophoretic mobility shift assays then confirmed that SUD-M has higher affinity for purine bases than for pyrimidine bases. In further search for clues to the function, we found that SUD-M(527-651) has the closest three-dimensional structure homology with another domain of nsp3, the ADP-ribose-1''-phosphatase nsp3b, although the two proteins share only 5% sequence identity in the homologous sequence regions. SUD-M(527-651) also shows 3D structure homology with several helicases and NTP-binding proteins, but it does not contain the motifs of catalytic residues found in these structural homologues. The combined results from NMR screening of potential substrates and the structure-based homology studies now form a basis for more focused investigations on the role of the SARS-unique domain in viral infection.