163 resultados para Greenhouse gas fluxes
Resumo:
Preferred structures in the surface pressure variability are investigated in and compared between two 100-year simulations of the Hadley Centre climate model HadCM3. In the first (control) simulation, the model is forced with pre-industrial carbon dioxide concentration (1×CO2) and in the second simulation the model is forced with doubled CO2 concentration (2×CO2). Daily winter (December-January-February) surface pressures over the Northern Hemisphere are analysed. The identification of preferred patterns is addressed using multivariate mixture models. For the control simulation, two significant flow regimes are obtained at 5% and 2.5% significance levels within the state space spanned by the leading two principal components. They show a high pressure centre over the North Pacific/Aleutian Islands associated with a low pressure centre over the North Atlantic, and its reverse. For the 2×CO2 simulation, no such behaviour is obtained. At higher-dimensional state space, flow patterns are obtained from both simulations. They are found to be significant at the 1% level for the control simulation and at the 2.5% level for the 2×CO2 simulation. Hence under CO2 doubling, regime behaviour in the large-scale wave dynamics weakens. Doubling greenhouse gas concentration affects both the frequency of occurrence of regimes and also the pattern structures. The less frequent regime becomes amplified and the more frequent regime weakens. The largest change is observed over the Pacific where a significant deepening of the Aleutian low is obtained under CO2 doubling.
Resumo:
This study investigates the response of wintertime North Atlantic Oscillation (NAO) to increasing concentrations of atmospheric carbon dioxide (CO2) as simulated by 18 global coupled general circulation models that participated in phase 2 of the Coupled Model Intercomparison Project (CMIP2). NAO has been assessed in control and transient 80-year simulations produced by each model under constant forcing, and 1% per year increasing concentrations of CO2, respectively. Although generally able to simulate the main features of NAO, the majority of models overestimate the observed mean wintertime NAO index of 8 hPa by 5-10 hPa. Furthermore, none of the models, in either the control or perturbed simulations, are able to reproduce decadal trends as strong as that seen in the observed NAO index from 1970-1995. Of the 15 models able to simulate the NAO pressure dipole, 13 predict a positive increase in NAO with increasing CO2 concentrations. The magnitude of the response is generally small and highly model-dependent, which leads to large uncertainty in multi-model estimates such as the median estimate of 0.0061 +/- 0.0036 hPa per %CO2. Although an increase of 0.61 hPa in NAO for a doubling in CO2 represents only a relatively small shift of 0.18 standard deviations in the probability distribution of winter mean NAO, this can cause large relative increases in the probabilities of extreme values of NAO associated with damaging impacts. Despite the large differences in NAO responses, the models robustly predict similar statistically significant changes in winter mean temperature (warmer over most of Europe) and precipitation (an increase over Northern Europe). Although these changes present a pattern similar to that expected due to an increase in the NAO index, linear regression is used to show that the response is much greater than can be attributed to small increases in NAO. NAO trends are not the key contributor to model-predicted climate change in wintertime mean temperature and precipitation over Europe and the Mediterranean region. However, the models' inability to capture the observed decadal variability in NAO might also signify a major deficiency in their ability to simulate the NAO-related responses to climate change.
Resumo:
To understand how greenhouse gas (GHG) emissions may affect future stratospheric ozone, 21st century projections from four chemistry-climate models are examined for their dependence on six different GHG scenarios. Compared to higher GHG emissions, lower emissions result in smaller increases in tropical upwelling with resultant smaller reductions in ozone in the tropical lower stratosphere and less severe stratospheric cooling with resultant smaller increases in upper stratospheric ozone globally. Increases in reactive nitrogen and hydrogen that lead to additional chemical ozone destruction mainly play a role in scenarios with higher GHG emissions. Differences among the six GHG scenarios are found to be largest over northern midlatitudes (∼20 DU by 2100) and in the Arctic (∼40 DU by 2100) with divergence mainly in the second half of the 21st century. The uncertainty in the return of stratospheric column ozone to 1980 values arising from different GHG scenarios is comparable to or less than the uncertainty that arises from model differences in the larger set of 17 CCMVal-2 SRES A1B simulations. The results suggest that effects of GHG emissions on future stratospheric ozone should be considered in climate change mitigation policy and ozone projections should be assessed under more than a single GHG scenario.
Resumo:
A new electronic software distribution (ESD) life cycle analysis (LCA)methodology and model structure were constructed to calculate energy consumption and greenhouse gas (GHG) emissions. In order to counteract the use of high level, top-down modeling efforts, and to increase result accuracy, a focus upon device details and data routes was taken. In order to compare ESD to a relevant physical distribution alternative,physical model boundaries and variables were described. The methodology was compiled from the analysis and operational data of a major online store which provides ESD and physical distribution options. The ESD method included the calculation of power consumption of data center server and networking devices. An in-depth method to calculate server efficiency and utilization was also included to account for virtualization and server efficiency features. Internet transfer power consumption was analyzed taking into account the number of data hops and networking devices used. The power consumed by online browsing and downloading was also factored into the model. The embedded CO2e of server and networking devices was proportioned to each ESD process. Three U.K.-based ESD scenarios were analyzed using the model which revealed potential CO2e savings of 83% when ESD was used over physical distribution. Results also highlighted the importance of server efficiency and utilization methods.
Resumo:
The feasibility of halving greenhousegasemissions from hotels by 2030 has been studied as part of the Carbon Vision Buildings Programme. The aim of that programme was to study ways of reducing emissions from the existing stock because it will be responsible for the majority of building emissions over the next few decades. The work was carried out using detailed computer simulation using the ESP-r tool. Two hotels were studied, one older and converted and the other newer and purpose-built, with the aim of representing the most common UKhotel types. The effects were studied of interventions expected to be available in 2030 including fabric improvements, HVAC changes, lighting and appliance improvements and renewable energy generation. The main finding was that it is technically feasible to reduce emissions by 50% without compromising guest comfort. Ranking of the interventions was problematical for several reasons including interdependence and the impacts on boiler sizing of large reductions in the heating load
Resumo:
Interest in attributing the risk of damaging weather-related events to anthropogenic climate change is increasing1. Yet climate models used to study the attribution problem typically do not resolve the weather systems associated with damaging events2 such as the UK floods of October and November 2000. Occurring during the wettest autumn in England and Wales since records began in 17663, 4, these floods damaged nearly 10,000 properties across that region, disrupted services severely, and caused insured losses estimated at £1.3 billion (refs 5, 6). Although the flooding was deemed a ‘wake-up call’ to the impacts of climate change at the time7, such claims are typically supported only by general thermodynamic arguments that suggest increased extreme precipitation under global warming, but fail8, 9 to account fully for the complex hydrometeorology4, 10 associated with flooding. Here we present a multi-step, physically based ‘probabilistic event attribution’ framework showing that it is very likely that global anthropogenic greenhouse gas emissions substantially increased the risk of flood occurrence in England and Wales in autumn 2000. Using publicly volunteered distributed computing11, 12, we generate several thousand seasonal-forecast-resolution climate model simulations of autumn 2000 weather, both under realistic conditions, and under conditions as they might have been had these greenhouse gas emissions and the resulting large-scale warming never occurred. Results are fed into a precipitation-runoff model that is used to simulate severe daily river runoff events in England and Wales (proxy indicators of flood events). The precise magnitude of the anthropogenic contribution remains uncertain, but in nine out of ten cases our model results indicate that twentieth-century anthropogenic greenhouse gas emissions increased the risk of floods occurring in England and Wales in autumn 2000 by more than 20%, and in two out of three cases by more than 90%.
Resumo:
Tetrafluoromethane, CF4, is powerful greenhouse gas, and the possibility of storing it in microporous carbon has been widely studied. In this paper we show, for the first time, that the results of molecular simulations can be very helpful in the study of CF4 adsorption. Moreover, experimental data fit to the results collected from simulations. We explain the meaning of the empirical parameters of the supercritical Dubinin–Astakhov model proposed by Ozawa and finally the meaning of the parameter k of the empirical relation proposed by Amankwah and Schwarz.
Resumo:
Secular trends of daily precipitation characteristics are considered in the transient climate change experiment with a coupled atmosphere-ocean general circulation model ECHAM4/OPYC3 for 1900-2099. The climate forcing is due to increasing concentrations of the greenhouse gases in the atmosphere. Mean daily precipitation, precipitation intensity, probability of wet days and parameters of the gamma distribution are analyzed. Particular attention is paid to the changes of heavy precipitation, Analysis of the annual mean precipitation trends for 1900-1999 revealed general agreement with observations with significant positive trends in mean precipitation over continental areas. In the 2000-2099 period precipitation trend patterns followed the tendency obtained for 1900-1999 but with significantly increased magnitudes. Unlike the annual mean precipitation trends for which negative values were found for some continental areas, the mean precipitation intensity and scale parameter of the fitted gamma distribution increased over all land territories . Negative trends in the number of wet days were found over most of the land areas except high latitudes in the Northern Hemisphere. The shape parameter of the gamma distribution in general revealed a slight negative trend in the areas of the precipitation increase. Investigation of daily precipitation revealed an unproportional increase of heavy precipitation events for the land areas including local maxima in Europe and the eastern United States.