39 resultados para Geology--New Mexico.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Muleshoe Dunes, an east-west trending dunefield on the border separating Texas and New Mexico, consist of two distinct components: a white (carbonate rich) component and an overlying pink (quartz rich) component. The pink component exhibits significant spatial variation in redness. The reddest sands, in the western part of the dunefield, decrease in redness towards the east. This gradient is thought to result from abrasion of all iron-rich, red clay coating as the sediments were transported eastward by Late Quaternary aeolian processes. The effects of aeolian abrasion on the spectral signature and surface texture of the sediments were examined using laboratory abrasion experiments. Changes in spectral reflectance of abrasion samples from the laboratory were compared to field samples that were abraded naturally because of sediment transport. The changes resulting from increased time of abrasion are similar to those observed with increased distance downwind in the dunefield. These results suggest that downwind abrasion can explain the pattern of dune colour in the Muleshoe Dunes, although this does not preclude other possible causes. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Muleshoe Dunes, an east-west trending dunefield on the border separating Texas and New Mexico, consist of two distinct components: a white (carbonate rich) component and an overlying pink (quartz rich) component. The pink component exhibits significant spatial variation in redness. The reddest sands, in the western part of the dunefield, decrease in redness towards the east. This gradient is thought to result from abrasion of all iron-rich, red clay coating as the sediments were transported eastward by Late Quaternary aeolian processes. The effects of aeolian abrasion on the spectral signature and surface texture of the sediments were examined using laboratory abrasion experiments. Changes in spectral reflectance of abrasion samples from the laboratory were compared to field samples that were abraded naturally because of sediment transport. The changes resulting from increased time of abrasion are similar to those observed with increased distance downwind in the dunefield. These results suggest that downwind abrasion can explain the pattern of dune colour in the Muleshoe Dunes, although this does not preclude other possible causes. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Once unit-cell dimensions have been determined from a powder diffraction data set and therefore the crystal system is known (e.g. orthorhombic), the method presented by Markvardsen, David, Johnson & Shankland [Acta Cryst. (2001), A57, 47-54] can be used to generate a table ranking the extinction symbols of the given crystal system according to probability. Markvardsen et al. tested a computer program (ExtSym) implementing the method against Pawley refinement outputs generated using the TF12LS program [David, Ibberson & Matthewman (1992). Report RAL-92-032. Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, UK]. Here, it is shown that ExtSym can be used successfully with many well known powder diffraction analysis packages, namely DASH [David, Shankland, van de Streek, Pidcock, Motherwell & Cole (2006). J. Appl. Cryst. 39, 910-915], FullProf [Rodriguez-Carvajal (1993). Physica B, 192, 55-69], GSAS [Larson & Von Dreele (1994). Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA], PRODD [Wright (2004). Z. Kristallogr. 219, 1-11] and TOPAS [Coelho (2003). Bruker AXS GmbH, Karlsruhe, Germany]. In addition, a precise description of the optimal input for ExtSym is given to enable other software packages to interface with ExtSym and to allow the improvement/modification of existing interfacing scripts. ExtSym takes as input the powder data in the form of integrated intensities and error estimates for these intensities. The output returned by ExtSym is demonstrated to be strongly dependent on the accuracy of these error estimates and the reason for this is explained. ExtSym is tested against a wide range of data sets, confirming the algorithm to be very successful at ranking the published extinction symbol as the most likely. (C) 2008 International Union of Crystallography Printed in Singapore - all rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We are social beings. What we do and don’t do, what we think, the decisions we take are all influenced by those around us. Sometimes we are conscious of those influences, often we are not. Those who influence us are not just our close family and friends, our own social and professional networks, but the wider societies and cultures to which we belong. The goals we espouse, the values we hold, the image we have of ourselves are all molded to a large extent by our interactions and relationships with other people. The social sciences offer a range of concepts and tools for exploring these influences. In this paper, I introduce some of these and illustrate them with recent research I and my colleagues have been doing at the University of Reading among livestock farmers in the UK, with a view to providing insights that can then be used to plan and implement more effective interventions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study focuses on the mechanisms underlying water and heat transfer in upper soil layers, and their effects on soil physical prognostic variables and the individual components of the energy balance. The skill of the JULES (Joint UK Land Environment Simulator) land surface model (LSM) to simulate key soil variables, such as soil moisture content and surface temperature, and fluxes such as evaporation, is investigated. The Richards equation for soil water transfer, as used in most LSMs, was updated by incorporating isothermal and thermal water vapour transfer. The model was tested for three sites representative of semi-arid and temperate arid climates: the Jornada site (New Mexico, USA), Griffith site (Australia) and Audubon site (Arizona, USA). Water vapour flux was found to contribute significantly to the water and heat transfer in the upper soil layers. This was mainly due to isothermal vapour diffusion; thermal vapour flux also played a role at the Jornada site just after rainfall events. Inclusion of water vapour flux had an effect on the diurnal evolution of evaporation, soil moisture content and surface temperature. The incorporation of additional processes, such as water vapour flux among others, into LSMs may improve the coupling between the upper soil layers and the atmosphere, which in turn could increase the reliability of weather and climate predictions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We evaluate the effects of spatial resolution on the ability of a regional climate model to reproduce observed extreme precipitation for a region in the Southwestern United States. A total of 73 National Climate Data Center observational sites spread throughout Arizona and New Mexico are compared with regional climate simulations at the spatial resolutions of 50 km and 10 km for a 31 year period from 1980 to 2010. We analyze mean, 3-hourly and 24-hourly extreme precipitation events using WRF regional model simulations driven by NCEP-2 reanalysis. The mean climatological spatial structure of precipitation in the Southwest is well represented by the 10 km resolution but missing in the coarse (50 km resolution) simulation. However, the fine grid has a larger positive bias in mean summer precipitation than the coarse-resolution grid. The large overestimation in the simulation is in part due to scale-dependent deficiencies in the Kain-Fritsch convective parameterization scheme that generate excessive precipitation and induce a slow eastward propagation of the moist convective summer systems in the high-resolution simulation. Despite this overestimation in the mean, the 10 km simulation captures individual extreme summer precipitation events better than the 50 km simulation. In winter, however, the two simulations appear to perform equally in simulating extremes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed view of Southern Hemisphere storm tracks is obtained based on the application of filtered variance and modern feature-tracking techniques to a wide range of 45-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data. It has been checked that the conclusions drawn in this study are valid even if data from only the satellite era are used. The emphasis of the paper is on the winter season, but results for the four seasons are also discussed. Both upper- and lower-tropospheric fields are used. The tracking analysis focuses on systems that last longer than 2 days and are mobile (move more than 1000 km). Many of the results support previous ideas about the storm tracks, but some new insights are also obtained. In the summer there is a rather circular, strong, deep high-latitude storm track. In winter the high-latitude storm track is more asymmetric with a spiral from the Atlantic and Indian Oceans in toward Antarctica and a subtropical jet–related lower-latitude storm track over the Pacific, again tending to spiral poleward. At all times of the year, maximum storm activity in the higher-latitude storm track is in the Atlantic and Indian Ocean regions. In the winter upper troposphere, the relative importance of, and interplay between, the subtropical and subpolar storm tracks is discussed. The genesis, lysis, and growth rate of lower-tropospheric winter cyclones together lead to a vivid picture of their behavior that is summarized as a set of overlapping plates, each composed of cyclone life cycles. Systems in each plate appear to feed the genesis in the next plate through downstream development in the upper-troposphere spiral storm track. In the lee of the Andes in South America, there is cyclogenesis associated with the subtropical jet and also, poleward of this, cyclogenesis largely associated with system decay on the upslope and regeneration on the downslope. The genesis and lysis of cyclones and anticyclones have a definite spatial relationship with each other and with the Andes. At 500 hPa, their relative longitudinal positions are consistent with vortex-stretching ideas for simple flow over a large-scale mountain. Cyclonic systems near Antarctica have generally spiraled in from lower latitudes. However, cyclogenesis associated with mobile cyclones occurs around the Antarctic coast with an interesting genesis maximum over the sea ice near 150°E. The South Pacific storm track emerges clearly from the tracking as a coherent deep feature spiraling from Australia to southern South America. A feature of the summer season is the genesis of eastward-moving cyclonic systems near the tropic of Capricorn off Brazil, in the central Pacific and, to a lesser extent, off Madagascar, followed by movement along the southwest flanks of the subtropical anticyclones and contribution to the “convergence zone” cloud bands seen in these regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to explore the use of both an Eulerian and system-centered method of storm track diagnosis applied to a wide range of meteorological fields at multiple levels to provide a range of perspectives on the Northern Hemisphere winter transient motions and to give new insight into the storm track organization and behavior. The data used are primarily from the European Centre for Medium-Range Weather Forecasts reanalyses project extended with operational analyses to the period 1979-2000. This is supplemented by data from the National Centers for Environmental Prediction and Goddard Earth Observing System 1 reanalyses. The range of fields explored include the usual mean sea level pressure and the lower- and upper-tropospheric height, meridional wind, vorticity, and temperature, as well as the potential vorticity (PV) on a 330-K isentropic surface (PV330) and potential temperature on a PV = 2 PVU surface (theta(PV2)). As well as reporting the primary analysis based on feature tracking, the standard Eulerian 2-6-day bandpass filtered variance analysis is also reported and contrasted with the tracking diagnostics. To enable the feature points to be identified as extrema for all the chosen fields, a planetary wave background structure is removed at each data time. The bandpass filtered variance derived from the different fields yield a rich picture of the nature and comparative magnitudes of the North Pacific and Atlantic storm tracks, and of the Siberian and Mediterranean candidates for storm tracks. The feature tracking allows the cyclonic and anticyclonic activities to be considered seperately. The analysis indicates that anticyclonic features are generally much weaker with less coherence than the cyclonic systems. Cyclones and features associated with them are shown to have much greater coherence and give tracking diagnostics that create a vivid storm track picture that includes the aspects highlighted by the variances as well as highlighting aspects that are not readily available from Eulerian studies. In particular, the upper-tropospheric features as shown by negative theta(PV2), for example, occur in a band spiraling around the hemisphere from the subtropical North Atlantic eastward to the high latitudes of the same ocean basin. Lower-troposphere storm tracks occupy more limited longitudinal sectors, with many of the individual storms possibly triggered from the upper-tropospheric disturbances in the spiral band of activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Convectively coupled equatorial waves are fundamental components of the interaction between the physics and dynamics of the tropical atmosphere. A new methodology, which isolates individual equatorial wave modes, has been developed and applied to observational data. The methodology assumes that the horizontal structures given by equatorial wave theory can be used to project upper- and lower-tropospheric data onto equatorial wave modes. The dynamical fields are first separated into eastward- and westward-moving components with a specified domain of frequency–zonal wavenumber. Each of the components for each field is then projected onto the different equatorial modes using the y structures of these modes given by the theory. The latitudinal scale yo of the modes is predetermined by data to fit the equatorial trapping in a suitable latitude belt y = ±Y. The extent to which the different dynamical fields are consistent with one another in their depiction of each equatorial wave structure determines the confidence in the reality of that structure. Comparison of the analyzed modes with the eastward- and westward-moving components in the convection field enables the identification of the dynamical structure and nature of convectively coupled equatorial waves. In a case study, the methodology is applied to two independent data sources, ECMWF Reanalysis and satellite-observed window brightness temperature (Tb) data for the summer of 1992. Various convectively coupled equatorial Kelvin, mixed Rossby–gravity, and Rossby waves have been detected. The results indicate a robust consistency between the two independent data sources. Different vertical structures for different wave modes and a significant Doppler shifting effect of the background zonal winds on wave structures are found and discussed. It is found that in addition to low-level convergence, anomalous fluxes induced by strong equatorial zonal winds associated with equatorial waves are important for inducing equatorial convection. There is evidence that equatorial convection associated with Rossby waves leads to a change in structure involving a horizontal structure similar to that of a Kelvin wave moving westward with it. The vertical structure may also be radically changed. The analysis method should make a very powerful diagnostic tool for investigating convectively coupled equatorial waves and the interaction of equatorial dynamics and physics in the real atmosphere. The results from application of the analysis method for a reanalysis dataset should provide a benchmark against which model studies can be compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An intensification of the hydrological cycle is a likely consequence of global warming. But changes in the hydrological cycle could affect sea-surface temperature by modifying diffusive ocean heat transports. We investigate this mechanism by studying a coupled general circulation model sensitivity experiment in which the hydrological cycle is artificially amplified. We find that the amplified hydrological cycle depresses sea-surface temperature by enhancing ocean heat uptake in low latitudes. We estimate that a 10% increase in the hydrological cycle will contribute a basin-scale sea-surface temperature decrease of around 0.1°C away from high latitudes, with larger decreases locally. We conclude that an intensified hydrological cycle is likely to contribute a weak negative feedback to anthropogenic climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes the hypothesis that the low-frequency variability of the North Atlantic Oscillation (NAO) arises as a result of variations in the occurrence of upper-level Rossby wave–breaking events over the North Atlantic. These events lead to synoptic situations similar to midlatitude blocking that are referred to as high-latitude blocking episodes. A positive NAO is envisaged as being a description of periods in which these episodes are infrequent and can be considered as a basic, unblocked situation. A negative NAO is a description of periods in which episodes occur frequently. A similar, but weaker, relationship exists between wave breaking over the Pacific and the west Pacific pattern. Evidence is given to support this hypothesis by using a two-dimensional potential-vorticity-based index to identify wave breaking at various latitudes. This is applied to Northern Hemisphere winter data from the 40-yr ECMWF Re-Analysis (ERA-40), and the events identified are then related to the NAO. Certain dynamical precursors are identified that appear to increase the likelihood of wave breaking. These suggest mechanisms by which variability in the tropical Pacific, and in the stratosphere, could affect the NAO.