22 resultados para Gall bladder
Resumo:
The first application of high field NMR spectroscopy (800 MHz for 1H observation) to human hepatic bile (as opposed to gall bladder bile) is reported. The bile sample used for detailed investigation was from a donor liver with mild fat infiltration, collected during organ retrieval prior to transplantation. In addition, to focus on the detection of bile acids in particular, a bile extract was analysed by 800 MHz 1H NMR spectroscopy, HPLC-NMR/MS and UPLC-MS. In the whole bile sample, 40 compounds have been assigned with the aid of two-dimensional 1H–1H TOCSY and 1H–13C HSQC spectra. These include phosphatidylcholine, 14 amino acids, 10 organic acids, 4 carbohydrates and polyols (glucose, glucuronate, glycerol and myo-inositol), choline, phosphocholine, betaine, trimethylamine-N-oxide and other small molecules. An initial NMR-based assessment of the concentration range of some key metabolites has been made. Some observed chemical shifts differ from expected database values, probably due to a difference in bulk diamagnetic susceptibility. The NMR spectra of the whole extract gave identification of the major bile acids (cholic, deoxycholic and chenodeoxycholic), but the glycine and taurine conjugates of a given bile acid could not be distinguished. However, this was achieved by HPLC-NMR/MS, which enabled the separation and identification of ten conjugated bile acids with relative abundances varying from approximately 0.1% (taurolithocholic acid) to 34.0% (glycocholic acid), of which, only the five most abundant acids could be detected by NMR, including the isomers glycodeoxycholic acid and glycochenodeoxycholic acid, which are difficult to distinguish by conventional LC-MS analysis. In a separate experiment, the use of UPLC-MS allowed the detection and identification of 13 bile acids. This work has shown the complementary potential of NMR spectroscopy, MS and hyphenated NMR/MS for elucidating the complex metabolic profile of human hepatic bile. This will be useful baseline information in ongoing studies of liver excretory function and organ transplantation.
Resumo:
In this paper we present a compliant neural interface designed to record bladder afferent activity. We developed the implant's microfabrication process using multiple layers of silicone rubber and thin metal so that a gold microelectrode array is embedded within four parallel polydimethylsiloxane (PDMS) microchannels (5 mm long, 100 μm wide, 100 μm deep). Electrode impedance at 1 kHz was optimized using a reactive ion etching (RIE) step, which increased the porosity of the electrode surface. The electrodes did not deteriorate after a 3 month immersion in phosphate buffered saline (PBS) at 37 °C. Due to the unique microscopic topography of the metal film on PDMS, the electrodes are extremely compliant and can withstand handling during implantation (twisting and bending) without electrical failure. The device was transplanted acutely to anaesthetized rats, and strands of the dorsal branch of roots L6 and S1 were surgically teased and inserted in three microchannels under saline immersion to allow for simultaneous in vivo recordings in an acute setting. We utilized a tripole electrode configuration to maintain background noise low and improve the signal to noise ratio. The device could distinguish two types of afferent nerve activity related to increasing bladder filling and contraction. To our knowledge, this is the first report of multichannel recordings of bladder afferent activity.
Resumo:
By placing axons into polymeric micro-channels hosting embedded electrodes the extracellular amplitude of action potentials is greatly increased, allowing for robust recording and noise suppression. We are developing such an electrode interface to record electrical activity from bladder afferents to restore bladder control in patients suffering from spinal cord injury. Here we describe our microchannel electrode interface in terms of design, microfabrication and electrode characteristics and report on in vivo bladder function after implantation of teased dorsal rootlets within microchannels.
Resumo:
A severe complication of spinal cord injury is loss of bladder function (neurogenic bladder), which is characterized by loss of bladder sensation and voluntary control of micturition (urination), and spontaneous hyperreflexive voiding against a closed sphincter (detrusor-sphincter dyssynergia). A sacral anterior root stimulator at low frequency can drive volitional bladder voiding, but surgical rhizotomy of the lumbosacral dorsal roots is needed to prevent spontaneous voiding and dyssynergia. However, rhizotomy is irreversible and eliminates sexual function, and the stimulator gives no information on bladder fullness. We designed a closed-loop neuroprosthetic interface that measures bladder fullness and prevents spontaneous voiding episodes without the need for dorsal rhizotomy in a rat model. To obtain bladder sensory information, we implanted teased dorsal roots (rootlets) within the rat vertebral column into microchannel electrodes, which provided signal amplification and noise suppression. As long as they were attached to the spinal cord, these rootlets survived for up to 3 months and contained axons and blood vessels. Electrophysiological recordings showed that half of the rootlets propagated action potentials, with firing frequency correlated to bladder fullness. When the bladder became full enough to initiate spontaneous voiding, high-frequency/amplitude sensory activity was detected. Voiding was abolished using a high-frequency depolarizing block to the ventral roots. A ventral root stimulator initiated bladder emptying at low frequency and prevented unwanted contraction at high frequency. These data suggest that sensory information from the dorsal root together with a ventral root stimulator could form the basis for a closed-loop bladder neuroprosthetic. Copyright © 2013, American Association for the Advancement of Science
Resumo:
Inhibition of biofilm seems to be a major mechanism of urinary tract pathogen exclusion, related to, and possibly dependent upon, the probiotic ability to reduce environmental pH. Exclusion via competition of binding sites is a possible in vivo mechanism for these probiotics. If an additive or synergistic effect exists between strains within a mixture, it does not manifest itself in a greater effect through these two inhibitory mechanisms.
Resumo:
Thiol-bearing microgels have been synthesised from copolymerisation of 2-(acetylthio)ethylacrylate and 2-hydroxyethylmethacrylate, and subsequent deprotection using sodium thiomethoxide. The concentration of thiol groups on these microgels could be tailored by use of different molar ratios of the two monomers. These thiol-bearing microgels were shown to adhere to ex vivo porcine urinary bladder, which was correlated with their level of thiolation. By simply mixing solutions of thiol-bearing microgels and doxorubicin, high levels of drug loading into the microgels could be achieved. Thiol-bearing microgels controlled the release of doxorubicin in a time-dependent manner over several hours. These doxorubicin-loaded thiol-bearing microgels could have application in the treatment of early-stage bladder cancers. The method used represents a new ‘bottom-up’ approach for the synthesis of novel mucoadhesive microgels.
Resumo:
There are over 700 species of fig trees in the tropics and several thousand species of fig wasps are associated with their syconia (inflorescences). These wasps comprise a monophyletic family of fig pollinators and several diverse lineages of non-pollinating wasps. The pollinator larvae gall fig flowers, while larvae of non-pollinating species either initiate their own galls or parasitise the galls of other wasps. A single fig species has 1-4 pollinator species and also hosts up to 30 non-pollinating wasp species. Most wasps show a high degree of host plant specificity and are known from only a single fig species. However, in some cases wasps may be shared across closely related fig species. There is impressive morphological coevolution between figs and fig wasps and this, combined with a high degree of partner specificity, led to the expectation that figs and pollinators have cospeciated extensively. Comparison of deep phylogenies supports long-term codivergence of figs and pollinators, but also suggests that some host shifts have occurred. Phylogenies of more closely related species do not match perfectly and may even be incongruent, suggesting significant roles for processes other than strict cospeciation. Combined with recent evidence on host specificity patterns, this suggests that pollinator wasps may often speciate by host shifts between closely related figs, or by duplication (the wasp speciates but the fig doesn't). The frequencies and biological details of these different modes of speciation invite further study. Far less is known about speciation in non-pollinating fig wasps. Some lineages have probably coevolved with figs and pollinators for most of the evolutionary history of the symbiosis, while others appear to be more recent colonisers. Many species appear to be highly host plant specific, but those that lay eggs through the fig wall without entering the syconium (the majority of species) may be subject to fewer constraints on host-shifting than pollinators. There is evidence for substantial host shifting in at least one gens, but also evidence for ecological speciation on the same host plant by niche shifts in other cases. Finally, recent work has begun to address the issue of “community phylogeny” and provided evidence for long-term co-divergence of multiple pollinating and non-pollinating wasp lineages with their host figs.
Resumo:
Oak galls are spectacular extended phenotypes of gallwasp genes in host oak tissues and have evolved complex morphologies that serve, in part, to exclude parasitoid natural enemies. Parasitoids and their insect herbivore hosts have coevolved to produce diverse communities comprising about a third of all animal species. The factors structuring these communities, however, remain poorly understood. An emerging theme in community ecology is the need to consider the effects of host traits, shaped by both natural selection and phylogenetic history, on associated communities of natural enemies. Here we examine the impact of host traits and phylogenetic relatedness on 48 ecologically closed and species-rich communities of parasitoids attacking gall-inducing wasps on oaks. Gallwasps induce the development of spectacular and structurally complex galls whose species- and generation-specific morphologies are the extended phenotypes of gallwasp genes. All the associated natural enemies attack their concealed hosts through gall tissues, and several structural gall traits have been shown to enhance defence against parasitoid attack. Here we explore the significance of these and other host traits in predicting variation in parasitoid community structure across gallwasp species. In particular, we test the "Enemy Hypothesis,'' which predicts that galls with similar morphology will exclude similar sets of parasitoids and therefore have similar parasitoid communities. Having controlled for phylogenetic patterning in host traits and communities, we found significant correlations between parasitoid community structure and several gall structural traits (toughness, hairiness, stickiness), supporting the Enemy Hypothesis. Parasitoid community structure was also consistently predicted by components of the hosts' spatiotemporal niche, particularly host oak taxonomy and gall location (e.g., leaf versus bud versus seed). The combined explanatory power of structural and spatiotemporal traits on community structure can be high, reaching 62% in one analysis. The observed patterns derive mainly from partial niche specialisation of highly generalist parasitoids with broad host ranges (>20 hosts), rather than strict separation of enemies with narrower host ranges, and so may contribute to maintenance of the richness of generalist parasitoids in gallwasp communities. Though evolutionary escape from parasitoids might most effectively be achieved via changes in host oak taxon, extreme conservatism in this trait for gallwasps suggests that selection is more likely to have acted on gall morphology and location. Any escape from parasitoids associated with evolutionary shifts in these traits has probably only been transient, however, due to subsequent recruitment of parasitoid species already attacking other host galls with similar trait combinations.
Resumo:
Diversification of insect herbivores is often associated with coevolution between plant toxins and insect countermeasures, resulting in a specificity that restricts host plant shifts. Gall inducers, however, bypass plant toxins and the factors influencing host plant associations in these specialized herbivores remain unclear. We reconstructed the evolution of host plant associations in Western Palaearctic oak gallwasps (Cynipidae: Cynipini), a species-rich lineage of specialist herbivores on oak (Quercus). (1) Bayesian analyses of sequence data for three genes revealed extreme host plant conservatism, with inferred shifts between major oak lineages (sections Cerris and Quercus) closely matching the minimum required to explain observed diversity. It thus appears that the coevolutionary demands of gall induction constrain host plant shifts, both in cases of mutualism (e.g., fig wasps, yucca moths) and parasitism (oak gallwasps). (2) Shifts between oak sections occurred independently in sexual and asexual generations of the gallwasp lifecycle, implying that these can evolve independently. (3) Western Palaearctic gallwasps associated with sections Cerris and Quercus diverged at least 20 million years ago (mya), prior to the arrival of oaks in the Western Palaearctic from Asia 5-7 mya. This implies an Asian origin for Western Palaearctic gallwasps, with independent westwards range expansion by multiple lineages.
Resumo:
Fig trees are pollinated by fig wasps, which also oviposit in female flowers. The wasp larvae gall and eat developing seeds. Although fig trees benefit from allowing wasps to oviposit, because the wasp offspring disperse pollen, figs must prevent wasps from ovipositing in all flowers, or seed production would cease, and the mutualism would go extinct. In Ficus racemosa, we find that syconia (‘figs’) that have few foundresses (ovipositing wasps) are underexploited in the summer (few seeds, few galls, many empty ovules) and are overexploited in the winter (few seeds, many galls, few empty ovules). Conversely, syconia with many foundresses produce intermediate numbers of galls and seeds, regardless of season. We use experiments to explain these patterns, and thus, to explain how this mutualism is maintained. In the hot summer, wasps suffer short lifespans and therefore fail to oviposit in many flowers. In contrast, cooler temperatures in the winter permit longer wasp lifespans, which in turn allows most flowers to be exploited by the wasps. However, even in winter, only in syconia that happen to have few foundresses are most flowers turned into galls. In syconia with higher numbers of foundresses, interference competition reduces foundress lifespans, which reduces the proportion of flowers that are galled. We further show that syconia encourage the entry of multiple foundresses by delaying ostiole closure. Taken together, these factors allow fig trees to reduce galling in the wasp-benign winter and boost galling (and pollination) in the wasp-stressing summer. Interference competition has been shown to reduce virulence in pathogenic bacteria. Our results show that interference also maintains cooperation in a classic, cooperative symbiosis, thus linking theories of virulence and mutualism. More generally, our results reveal how frequency-dependent population regulation can occur in the fig-wasp mutualism, and how a host species can ‘set the rules of the game’ to ensure mutualistic behavior in its symbionts.
Resumo:
1. Fig trees (Ficus) are pollinated only by agaonid wasps, whose larvae also gall fig ovules. Each ovule develops into either a seed (when pollinated) or a wasp (when an egg is also laid inside) but not both. 2. Ovipositing wasps (foundresses) favour ovules near the centre of the enclosed inflorescence (syconium or 'fig'), leaving ovules near the outer wall to develop into seeds. This spatial stratification of wasps and seeds ensures reproduction in both partners, and thereby enables mutualism persistence. However, the mechanism(s) responsible remain(s) unknown. 3. Theory shows that foundresses will search for increasingly rare inner ovules and ignore outer ovules, as long as ovipositing in outer ovules is sufficiently slow and/or if inner ovules confer greater fitness to wasps. The fig-pollinator mutualism can therefore be stabilized by strong time constraints on foundresses and by offspring fitness gradients over variation in ovule position. 4. Female fig wasps cannot leave their galls without male assistance. We found that females in outer ovules were unlikely to be released. Inner ovules thus have added value to foundresses, because their female offspring are more likely to mate and disperse. 5. For those offspring that did emerge, gall position (inner/outer) and body size did not influence the order in which female pollinators exited syconia, nor did early emerging wasps enjoy increased life spans. 6. We also found that the life spans of female wasps nearly doubled when given access to moisture. We suggest that conflict resolution in the fig-pollinator mutualism may thus be influenced by tropical seasonality, because wasps may be less able to over-exploit ovules in dry periods due to time constraints.
Resumo:
Mutualisms are interspecific interactions in which both players benefit. Explaining their maintenance is problematic, because cheaters should outcompete cooperative conspecifics, leading to mutualism instability. Monoecious figs (Ficus) are pollinated by host-specific wasps (Agaonidae), whose larvae gall ovules in their "fruits'' (syconia). Female pollinating wasps oviposit directly into Ficus ovules from inside the receptive syconium. Across Ficus species, there is a widely documented segregation of pollinator galls in inner ovules and seeds in outer ovules. This pattern suggests that wasps avoid, or are prevented from ovipositing into, outer ovules, and this results in mutualism stability. However, the mechanisms preventing wasps from exploiting outer ovules remain unknown. We report that in Ficus rubiginosa, offspring in outer ovules are vulnerable to attack by parasitic wasps that oviposit from outside the syconium. Parasitism risk decreases towards the centre of the syconium, where inner ovules provide enemy-free space for pollinator offspring. We suggest that the resulting gradient in offspring viability is likely to contribute to selection on pollinators to avoid outer ovules, and by forcing wasps to focus on a subset of ovules, reduces their galling rates. This previously unidentified mechanism may therefore contribute to mutualism persistence independent of additional factors that invoke plant defences against pollinator oviposition, or physiological constraints on pollinators that prevent oviposition in all available ovules.
Resumo:
Milk is a complex and complete food containing an array of essential nutrients that contribute toward a healthy, balanced diet. Numerous epidemiological studies have revealed that high consumption of milk and dairy products may have protective effects against coronary heart disease (CHD), stroke, diabetes, certain cancers (such as colorectal and bladder cancers), and dementia, although the mechanisms of action are unclear. Despite this epidemiological evidence, milk fatty acid profiles often lead to a negative perception of milk and dairy products. However, altering the fatty acid profile of milk by changing the dairy cow diet is a successful strategy, and intervention studies have shown that this approach may lead to further benefits of milk/dairy consumption. Overall, evidence suggests individuals who consume a greater amount of milk and dairy products have a slightly better health advantage than those who do not consume milk and dairy products.
Resumo:
Lifetime reproductive success in female insects is often egg- or time-limited. For instance in pro-ovigenic species, when oviposition sites are abundant, females may quickly become devoid of eggs. Conversely, in the absence of suitable oviposition sites, females may die before laying all of their eggs. In pollinating fig wasps (Hymenoptera: Agaonidae), each species has an obligate mutualism with its host fig tree species [Ficus spp. (Moraceae)]. These pro-ovigenic wasps oviposit in individual ovaries within the inflorescences of monoecious Ficus (syconia, or ‘figs’), which contain many flowers. Each female flower can thus become a seed or be converted into a wasp gall. The mystery is that the wasps never oviposit in all fig ovaries, even when a fig contains enough wasp females with enough eggs to do so. The failure of all wasps to translate all of their eggs into offspring clearly contributes to mutualism persistence, but the underlying causal mechanisms are unclear. We found in an undescribed Brazilian Pegoscapus wasp population that the lifetime reproductive success of lone foundresses was relatively unaffected by constraints on oviposition. The number of offspring produced by lone foundresses experimentally introduced into receptive figs was generally lower than the numbers of eggs carried, despite the fact that the wasps were able to lay all or most of their eggs. Because we excluded any effects of intraspecific competitors and parasitic non-pollinating wasps, our data suggest that some pollinators produce few offspring because some of their eggs or larvae are unviable or are victims of plant defences.