24 resultados para Future Farmers of America.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uncertainties in changes to the spatial distribution and magnitude of the heaviest extremes of daily monsoon rainfall over India are assessed in the doubled CO2 climate change scenarios in the IPCC Fourth Assessment Report. Results show diverse changes to the spatial pattern of the 95th and 99th subseasonal percentiles, which are strongly tied to the mean precipitation change during boreal summer. In some models, the projected increase in heaviest rainfall over India at CO2 doubling is entirely predictable based upon the surface warming and the Clausius–Clapeyron relation, a result which may depend upon the choice of convection scheme. Copyright © 2009 Royal Meteorological Society and Crown Copyright

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An on-farm survey of 151 cattle farmers who had experienced a bovine tuberculosis (Mycobacterium bovis) breakdown on their farms was undertaken in 2003 to assess the costs associated with the breakdown. In 90 per cent of cases the cost was estimated to be less than 18,513 pound for dairy herds and less than El 1,462 for beef herds, but with a range from 229 pound to 103,817 pound. The main cost was the slaughter of reactor cattle. For the majority of the farmers, the compensation payments seemed to meet most of the costs of their breakdowns, although a majority was still left with net losses.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analysis of the climate of precipitation extremes as simulated by six European regional climate models (RCMs) is undertaken in order to describe/quantify future changes and to examine/interpret differences between models. Each model has adopted boundary conditions from the same ensemble of global climate model integrations for present (1961–1990) and future (2071–2100) climate under the Intergovernmental Panel on Climate Change A2 emission scenario. The main diagnostics are multiyear return values of daily precipitation totals estimated from extreme value analysis. An evaluation of the RCMs against observations in the Alpine region shows that model biases for extremes are comparable to or even smaller than those for wet day intensity and mean precipitation. In winter, precipitation extremes tend to increase north of about 45°N, while there is an insignificant change or a decrease to the south. In northern Europe the 20-year return value of future climate corresponds to the 40- to 100-year return value of present climate. There is a good agreement between the RCMs, and the simulated change is similar to a scaling of present-day extremes by the change in average events. In contrast, there are large model differences in summer when RCM formulation contributes significantly to scenario uncertainty. The model differences are well explained by differences in the precipitation frequency and intensity process, but in all models, extremes increase more or decrease less than would be expected from the scaling of present-day extremes. There is evidence for a component of the change that affects extremes specifically and is consistent between models despite the large variation in the total response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The probabilistic projections of climate change for the United Kingdom (UK Climate Impacts Programme) show a trend towards hotter and drier summers. This suggests an expected increase in cooling demand for buildings – a conflicting requirement to reducing building energy needs and related CO2 emissions. Though passive design is used to reduce thermal loads of a building, a supplementary cooling system is often necessary. For such mixed-mode strategies, indirect evaporative cooling is investigated as a low energy option in the context of a warmer and drier UK climate. Analysis of the climate projections shows an increase in wet-bulb depression; providing a good indication of the cooling potential of an evaporative cooler. Modelling a mixed-mode building at two different locations, showed such a building was capable of maintaining adequate thermal comfort in future probable climates. Comparing the control climate to the scenario climate, an increase in the median of evaporative cooling load is evident. The shift is greater for London than for Glasgow with a respective 71.6% and 3.3% increase in the median annual cooling load. The study shows evaporative cooling should continue to function as an effective low-energy cooling technique in future, warming climates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent activity in the development of future weather data for building performance simulation follows recognition of the limitations of traditional methods, which have been based on a stationary (observed) climate. In the UK, such developments have followed on from the availability of regional climate models as delivered in UKCIP02 and recently the probabilistic projections released under UKCP09. One major area of concern is the future performance and adaptability of buildings which employ exclusively passive or low-energy cooling systems. One such method which can be employed in an integral or retrofit situation is direct or indirect evaporative cooling. The effectiveness of evaporative cooling is most strongly influenced by the wet-bulb depression of the ambient air, hence is generally regarded as most suited to hot, dry climates. However, this technology has been shown to be effective in the UK, primarily in mixed-mode buildings or as a retrofit to industrial/commercial applications. Climate projections for the UK generally indicate an increase in the summer wet-bulb depression, suggesting an enhanced potential for the application of evaporative cooling. The paper illustrates this potential by an analysis of the probabilistic scenarios released under UKCP09, together with a detailed building/plant simulation of case study building located in the South-East of England. The results indicate a high probability that evaporative cooling will still be a viable low-energy technique in the 2050s.