55 resultados para Freshwater wetlands
Resumo:
The Atlantic meridional overturning circulation (AMOC) is an important component of the climate system. Models indicate that the AMOC can be perturbed by freshwater forcing in the North Atlantic. Using an ocean-atmosphere general circulation model, we investigate the dependence of such a perturbation of the AMOC, and the consequent climate change, on the region of freshwater forcing. A wide range of changes in AMOC strength is found after 100 years of freshwater forcing. The largest changes in AMOC strength occur when the regions of deepwater formation in the model are forced directly, although reductions in deepwater formation in one area may be compensated by enhanced formation elsewhere. North Atlantic average surface air temperatures correlate linearly with the AMOC decline, but warming may occur in localised regions, notably over Greenland and where deepwater formation is enhanced. This brings into question the representativeness of temperature changes inferred from Greenland ice-core records.
Resumo:
Under global warming, the predicted intensification of the global freshwater cycle will modify the net freshwater flux at the ocean surface. Since the freshwater flux maintains ocean salinity structures, changes to the density-driven ocean circulation are likely. A modified ocean circulation could further alter the climate, potentially allowing rapid changes, as seen in the past. The relevant feedback mechanisms and timescales are poorly understood in detail, however, especially at low latitudes where the effects of salinity are relatively subtle. In an attempt to resolve some of these outstanding issues, we present an investigation of the climate response of the low-latitude Pacific region to changes in freshwater forcing. Initiated from the present-day thermohaline structure, a control run of a coupled ocean-atmosphere general circulation model is compared with a perturbation run in which the net freshwater flux is prescribed to be zero over the ocean. Such an extreme experiment helps to elucidate the general adjustment mechanisms and their timescales. The atmospheric greenhouse gas concentrations are held constant, and we restrict our attention to the adjustment of the upper 1,000 m of the Pacific Ocean between 40°N and 40°S, over 100 years. In the perturbation run, changes to the surface buoyancy, near-surface vertical mixing and mixed-layer depth are established within 1 year. Subsequently, relative to the control run, the surface of the low-latitude Pacific Ocean in the perturbation run warms by an average of 0.6°C, and the interior cools by up to 1.1°C, after a few decades. This vertical re-arrangement of the ocean heat content is shown to be achieved by a gradual shutdown of the heat flux due to isopycnal (i.e. along surfaces of constant density) mixing, the vertical component of which is downwards at low latitudes. This heat transfer depends crucially upon the existence of density-compensating temperature and salinity gradients on isopycnal surfaces. The timescale of the thermal changes in the perturbation run is therefore set by the timescale for the decay of isopycnal salinity gradients in response to the eliminated freshwater forcing, which we demonstrate to be around 10-20 years. Such isopycnal heat flux changes may play a role in the response of the low-latitude climate to a future accelerated freshwater cycle. Specifically, the mechanism appears to represent a weak negative sea surface temperature feedback, which we speculate might partially shield from view the anthropogenically-forced global warming signal at low latitudes. Furthermore, since the surface freshwater flux is shown to play a role in determining the ocean's thermal structure, it follows that evaporation and/or precipitation biases in general circulation models are likely to cause sea surface temperature biases.
Resumo:
A review of the implications of climate change for freshwater resources, based on Chapter 4 of Working Group 2, IPCC.
Resumo:
A wide range of issues relating to the presence and fate of pesticides and other micro-organic contaminants (MOCs) in surface freshwater sedimentary environments is reviewed. These issues include the sources, transport and occurrence of MOCs in freshwater environments; their ecological effects; their interaction with sedimentary material; and a range of processes related to their fate, including degradation, diffusion in bed sediments, bioturbation and slow contaminant release. An emphasis is placed on those processes-chemical, physical or biological-in which sediments play a role in determining the fate of micro-organics in freshwater environments. The issues of occurrence, source and transport, and the ecological effects of micro-organics are introduced more briefly, the focus where these aspects are concerned being largely on pesticides. In the concluding section, key points and issues relating to the study of micro-organics in freshwater environments are summarised and areas where initial or further research would be welcome are highlighted. It is hoped that this paper will both form a useful reference for workers in the field of micro-organic contaminants, and also stimulate new work in the freshwater environment and beyond. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
This investigation examines metal release from freshwater sediment using sequential extraction and single-step cold-acid leaching. The concentrations of Cd, Cr, Cu, Fe, Ni, Pb and Zn released using a standard 3-step sequential extraction (Rauret et al., 1999) are compared to those released using a 0.5 M HCl; leach. The results show that the three sediments behave in very different ways when subject to the same leaching experiments: the cold-acid extraction appears to remove higher relative concentrations of metals from the iron-rich sediment than from the other two sediments. Cold-acid extraction appears to be more effective at removing metals from sediments with crystalline iron oxides than the "reducible" step of the sequential extraction. The results show that a single-step acid leach can be just as effective as sequential extractions at removing metals from sediment and are a great deal less time-consuming.
Resumo:
Intensive cultivation of fen peat soils (Eutric Histosols) for agricultural purposes, started in Europe about 250 years ago, resulting in decreased soil fertility, increased oxidation of peat and corresponding CO2-emissions to the atmosphere, nutrient transfer to aquatic ecosystems and losses in the total area of the former native wetlands. To prevent these negative environmental effects set-aside programs and rewetting measures were promoted in recent years. Literature results and practical experiences showed that large scale rewetting of intensively used agricultural Histosols may result in the mobilisation of phosphorus (P), its transport to adjacent surface waters and an accelerated eutrophication risk. The paper summarises results from an international European Community sponsored research project and demonstrates how results obtained at different scales and from different scientific disciplines were compiled to derive a strategy to carry out rewetting measures. A decision support system (DSS) for a hydrologically sensitive area in the Droemling catchment in north-eastern Germany was developed and is presented as a tool to regulate rewetting in order to control P release. It is demonstrated that additional laboratory experiments to identify essential processes of P release during rewetting and the site-specific management of the water table, the involvement of specific knowledge and experience of the stakeholders are necessary to develop an applicable DSS. The presented DSS is practically used to prevent freshwater resources from diffuse P pollution.
Resumo:
Peat wetlands that have been restored from agricultural Land have the potential to act as Long term sources of phosphorus (P) and, therefore have to potenital to accelerate freshwater eutrophication. During a two-year study the water table in a eutrophic fen peat that was managed by pump drainage fluctuated annually between +20 cm and -60 cm relative to ground Level. This precise management was facilitated by the high hydraulic conductivity (K) of the humified peat (1.1 x 10(-5) m s(-1)) below around 60 cm depth. However, during one week of intermittent pumping, as much as 50 g ha(-1) dissolved P entered the pumped ditch. Summer. rainfall events and autumn reflooding also triggered P losses. The P Losses were attributed to the low P sorption capacity (217 mg kg(-1)) of the saturated peat below 60 cm, combined with its high K and the reductive dissolution of Fe bound P.
Resumo:
A wide range of issues relating to the presence and fate of pesticides and other micro-organic contaminants (MOCs) in surface freshwater sedimentary environments is reviewed. These issues include the sources, transport and occurrence of MOCs in freshwater environments; their ecological effects; their interaction with sedimentary material; and a range of processes related to their fate, including degradation, diffusion in bed sediments, bioturbation and slow contaminant release. An emphasis is placed on those processes-chemical, physical or biological-in which sediments play a role in determining the fate of micro-organics in freshwater environments. The issues of occurrence, source and transport, and the ecological effects of micro-organics are introduced more briefly, the focus where these aspects are concerned being largely on pesticides. In the concluding section, key points and issues relating to the study of micro-organics in freshwater environments are summarised and areas where initial or further research would be welcome are highlighted. It is hoped that this paper will both form a useful reference for workers in the field of micro-organic contaminants, and also stimulate new work in the freshwater environment and beyond. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Acid mine drainage (AMD) is a widespread environmental problem associated with both working and abandoned mining operations. As part of an overall strategy to determine a long-term treatment option for AMD, a pilot passive treatment plant was constructed in 1994 at Wheal Jane Mine in Cornwall, UK. The plant consists of three separate systems, each containing aerobic reed beds, anaerobic cell and rock filters, and represents the largest European experimental facility of its kind. The systems only differ by the type of pretreatment utilised to increase the pH of the influent minewater (pH <4): lime dosed (LD), anoxic limestone drain (ALD) and lime free (LF), which receives no form of pretreatment. Historical data (1994-1997) indicate median Fe reduction between 55% and 92%, sulphate removal in the range of 3-38% and removal of target metals (cadmium, copper and zinc) below detection limits, depending on pretreatment and flow rates through the system. A new model to simulate the processes and dynamics of the wetlands systems is described, as well as the application of the model to experimental data collected at the pilot plant. The model is process based, and utilises reaction kinetic approaches based on experimental microbial techniques rather than an equilibrium approach to metal precipitation. The model is dynamic and utilises numerical integration routines to solve a set of differential equations that describe the behaviour of 20 variables over the 17 pilot plant cells on a daily basis. The model outputs at each cell boundary are evaluated and compared with the measured data, and the model is demonstrated to provide a good representation of the complex behaviour of the wetland system for a wide range of variables. (C) 2004 Elsevier B.V/ All rights reserved.
Resumo:
Acid mine drainage (AMD) is a widespread environmental problem associated with both working and abandoned mining operations. As part of an overall strategy to determine a long-term treatment option for AMD, a pilot passive treatment plant was constructed in 1994 at Wheat Jane Mine in Cornwall, UK. The plant consists of three separate systems; each containing aerobic reed beds, anaerobic cell and rock filters, and represents the largest European experimental facility of its kind. The systems only differ by the type of pre-treatment utilised to increase the pH of the influent minewater (pH<4): lime-dosed (LD), anoxic limestone drain (ALD) and lime free (LF), which receives no form of pre-treatment. The Wheal Jane pilot plant offered a unique facility and a major research project was established to evaluate the pilot plant and study in detail the biological mechanisms and the geochemical and physical processes that control passive treatment systems. The project has led to data, knowledge, models and design criteria for the future design, planning and sustainable management of passive treatment systems. A multidisciplinary team of scientists and managers from the U.K. universities, the Environment Agency and the Mining Industry has been put together to obtain the maximum advantage from the excellent facilities facility at Wheal Jane. (C) 2004 Elseaier B.V All rights reserved.